欢迎访问《核聚变与等离子体物理》官方网站,今天是 分享到:

核工业西南物理研究院 ›› 2024, Vol. 44 ›› Issue (1): 111-118.DOI: 10.16568/j.0254-6086.202401018

• 等离子体物理 • 上一篇    下一篇

基于COMSOL的不同温度气体脉冲放电特性的数值模拟研究

宋先平,席剑飞*,陆  洋,蔡  杰,顾中铸   

  1. (南京师范大学能源与机械工程学院,南京 210023)
  • 收稿日期:2022-04-24 修回日期:2023-08-26 出版日期:2024-03-15 发布日期:2024-03-14
  • 通讯作者: 席剑飞(1989-),男,江苏淮安人,博士,副教授,从事燃烧、除尘理论与技术研究。
  • 作者简介:宋先平(1998-),男,安徽滁州人,硕士研究生,从事除尘理论与技术研究。
  • 基金资助:
    国家自然科学基金项目(51878356,51706107)

Numerical simulation of gas pulse discharge characteristics at different temperatures based on COMSOL

SONG Xian-ping, XI Jian-fei, LU Yang, CAI Jie, GU Zhong-zhu   

  1. (School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023)
  • Received:2022-04-24 Revised:2023-08-26 Online:2024-03-15 Published:2024-03-14

摘要: 为了研究基于脉冲电源的线管式静电除尘器的放电特性,使用COMSOL软件建立了空气放电模型。在实验参数下模拟了空气放电,模拟结果与实验数据结果吻合较好。探究峰值电压、电极尺寸及气体温度等因素对放电特性的影响。结果表明,随着峰值电压及温度的升高,放电空间电子及离子密度逐渐增大,且高密度区域范围逐渐增大。电极半径尺寸越小,放电效果越好,放电空间电子及离子密度越高。研究了不同温度下反应速率与热电子发射对气体放电的影响,发现温度较高时热电子发射对放电具有显著的增强效果,大大提高了放电区域的电子及离子密度。

关键词: 静电除尘, 脉冲电源, 放电特性, 热电子发射, 数值模拟

Abstract: In order to investigate the discharge characteristics of a wire-duct electrostatic precipitator based on the pulse power supply, an air discharge model is established using the COMSOL software. The calculated results are in good agreement with the experimental data. The detailed numerical simulation study is carried out to explore the influence of peak voltage, electrode size and gas temperature on discharge characteristics. The results show that with the increase of peak voltage and temperature, the density of electron and ion in discharge space increases gradually, and the range of high density area increases gradually. The smaller the electrode radius, the better the discharge effect and the higher the electron and ion density in the discharge space is. It is found that thermionic emission has a significant enhancement effect on the discharge at higher temperatures, which greatly improves the electron and ion density in the discharge region.

Key words:  , Electrostatic precipitation, Pulse power supply, Discharge characteristic, Thermionic emission, Numerical simulation

中图分类号: