An extraction mechanism based on micronozzle in the bottom of the microhollow cathode and applied bias electrical field is proposed, and digitally simulated with a two dimensional fluid model. When the operating gas is SF6 and its pressure is 2~9kPa, radius of the micronozzle is 0.25μm, maximum F atom flux density is between (1.53~5.62)×1014cm-3·s-1, maximum SF5+ flux density is between (2.46~7.83)×1016cm-3·s-1. When gas pressur is 5kPa,average energy of F atom at sample surface is 3.82eV, dispersion angle is −14º~14º; average energy of SF is 25eV, dispersion angle is −13º~14º. When applied voltage across hollow cathode and sample is between 10~50V (sample as cathode), average energy of SF is between 52~58eV. The density of F and SF in the simulation result could satisfy the requirement for silicon etching, and the feasibility of scanning plasma etching validated.