Welcome to Nuclear Fusion and Plasma Physics, Today is Share:

NUCLEAR FUSION AND PLASMA PHYSICS ›› 2018, Vol. 2 ›› Issue (1): 8-14.DOI: 10.16568/j.0254-6086.201801002

• Plasma Physics • Previous Articles     Next Articles

Fast direct solver for Grad-Shafranov equation based on compact scheme

HU Jin-di1, 2, XIAO Bing-jia1, LUO Zheng-ping1, HUANG Yao1   

  1. (1. Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031; 2. University of Science and Technology of China, Hefei 230026)
  • Received:2016-12-21 Revised:2017-10-22 Online:2018-03-15 Published:2018-03-15

基于紧致差分的Grad-Shafranov方程快速解法

胡金迪1, 2,肖炳甲1,罗正平1,黄 耀1   

  1. (1. 中国科学院等离子体物理研究所,合肥230031; 2. 中国科学技术大学,合肥230031)
  • 通讯作者: 罗正平(1983-),男,安徽池州人,博士,主要从事等离子体控制研究。
  • 作者简介:胡金迪(1991-),男,安徽蚌埠人,硕士,主要从事CUDA并行计算研究。
  • 基金资助:

    国家磁约束核聚变发展研究专项(2014GB103000);国家自然科学基金(11575245)

Abstract:

In the process of iterative computation of plasma equilibrium reconstruction, it is needed to fast solve Grad-Shafranov (G-S) equation. A fourth-order compact scheme was constructed with discrete sine transform (DST) technique to solve G-S equation, and CUDATM was used to realize parallel acceleration. This method will be used in EAST plasma equilibrium reconstruction PEFIT code to fast solve G-S equation based on compact scheme. It turns out that in 65×65 mesh, if the right side current distribution is known, the time needed to solve G-S equation based on GPU is about 34μs.

Key words: Poisson equation, Grad-Shafranov equation, Solov’ev equation, Compact scheme, DST technique, CUDA

摘要:

在等离子体平衡重建迭代计算过程中,需要快速求解Grad-Shafranov方程(G-S方程)。构造了具有四阶精度紧致差分格式的离散方程,采用离散正弦变换技术对其进行快速求解并采用CUDATM实现GPU并行加速,将其应用到EAST等离子体平衡重建PEFIT代码中,实现基于紧致差分格式的快速G-S方程求解。结果表明,在65×65的网格下,给定方程右端项电流分布的前提下,使用GPU求解G-S方程所需时间为大约34μs。

关键词: 泊松方程;Grad-Shafranov方程;Solov&rsquo, ev方程;紧致差分格式;DST技术;CUDA

CLC Number: