[1] Denne B, Hinnov E. Spectral lines of highly-ionized atoms for the diagnostics of fusion plasmas[J]. Phys. Scr., 1987, 35(6): 811-818.
[2] Deng Bai-quan, Allain J P, Lou Zheng-ming. Nearsurface bipartition model for the study of material response of plasma-facing surfaces exposed to energetic charged particles [J]. NIMB in Res. B, 2007, 259: 847-852.
[3] Deng Baiquan, Allain J P , Peng Lilin, et al. Interaction of impurity (Li, Be, B and C) and hydrogen isotope pellet injection with reactor-relevant plasma[J]. Plasma Science and Technology, 2005, 7(1): 2615.
[4] Wong K L, May M J, Beiersdorfer P, et al. Determination of the Charge state distribution of a highly ionized coronal Au plasma[J]. Phys. Rev. Lett., 2003, 90(23): 235001(4).
[5] Quintenz J P, Bloomquist D D, Leeper R J, et al. Light ion driven inertial confinement fusion[J]. Prog. Nucl., 1996, 30(2): 183-242.
[6] Glenzer S H, Fournier K B, Wilson B G, et al. Ionization balance in inertial confinement fusion Hohlraums[J]. Phys. Rev. Lett., 2001, 87(4): 045002(4).
[7] Foord M E, Glenzer S H, Thoe R S, et al. Ionization processes and charge-state distribution in a highly ionized high-Z laser-produced plasma[J]. Phys. Rev. Lett., 2000, 85(5): 992-995.
[8] Honda K, Mima K, Koike F. M-shell X-ray spectra of laser-produced gold plasmas[J].Phys. Rev. E, 1997, 55(4): 4594-4601.
[9] Palmeri P, Quinet P, Biémont é, et al. Wavelengths and transition probabilities for n=4→n′=4 transitions in heavy Cu-like ions (70≤ Z≤ 92)[J]. Atom Data Nucl. Data Tables, 2007, 93(3): 537-547.
[10] Wu Z W, Dong C Z, Jing J. Degrees of polarization of the two strongest 5f→3d lines following electron-impact excitation and dielectronic recombination processes of Cu-like to Se-like gold ions[J]. Phys. Rev. A, 2012, 86(2): 022712(8).
[11] Zeng Jiaolong, Zhao Gang, Yuan Jianmin. Electron impact collision strengths and oscillator strengths for Ge-, Ga-, Zn-, Cu-, Ni-, and Co-like Au ions[J]. Atom Data Nucl. Data Tables, 2007, 93(2): 199-273.
[12] Utter S B, Beiersdorfer P, Tr?bert E. Wavelength measurement of the prominent M1 transition in the ground state of Ti-like Pt, Au, and Tl ions[J]. Phys. Rev. A, 2003, 67(1): 012508(5).
[13] Parpia F A, Fischer C F, Grant I P. GRASP92: a package for large-scale relativistic atomic structure calculations[J]. Comput. Phys. Commun., 1996, 94: 249.
[14] Dyall K G, Grant I P, Johnson C T, et al. GRASP: a general-purpose relativistic atomic structure program[J]. Comput. Phys. Commun., 1989, 55: 425.
[15] Seely J F, Ekberg J O, Borown C M, et al. Laser-produced spectra and QED effects for Fe-, Co-, Cu-, and Zn-like ions of Au, Pb, Bi, Th, and U[J]. Phys. Rev. Lett., 1986, 57(23): 2924-2926.
[16] Song Shuqiang, Peng Feng, Jiang Gang. Properties of the Kα and Kβ X-ray transitions in CuXX through CuXXVIII[J]. J. Phys. B: At Mol. Opt. Phys., 2006, 39(8): 2087-2093.
[17] Hao Lianghuan, Jiang Gang, Song Shuqiang, et al. Relativistic multi-configuration calculations of Kα and Kβ X-ray transitions for highly ionized Mo ions[J]. Atom Data Nucl. Data Tables, 2008, 94 (5): 739-757.
[18] 陈波, 谭明亮, 蒋刚, 等. 类氦离子Ti20+能级结构和光谱跃迁的相对论计算[J]. 四川大学学报(自然科学版), 1998, 35: 367-371.
[19] Hu F, Jiang G, Hong W, et al. Wavelengths, transition probabilities, line strengths and oscillator strengths for the Kα and Kβ X-ray transitions in NiXIX through NiXXVII[J]. Eur. Phys. J D, 2008, 49 (3): 293-296.
[20] Hou Haijun, Jiang Gang, Hu Feng, et al. Relativistic configuration interaction calculations for the Kα and Kβ X-ray satellites of iron[J]. Atom Data Nucl. Data Tables, 2009, 95(2): 125-140.
[21] Zhang Li, Jiang Gang, Hao Lianghuan, et al. Relativistic configuration interaction calculations on Kα X-ray satellites of krypton[J]. Phys. Scr., 2011, 83(2): 025302 (7).
[22] Hao Lianghuan, Jiang Gang. Energy levels, transition rates, and line strengths of B-like ions[J]. Phys. Rev. A, 2011, 83(1): 012511(10).
[23] Xu Min, Jiang Gang, Deng Banglin, et al. Wavelengths, transition probabilities, and oscillator strengths for M-shell transitions in Co-, Ni-, Cu-, Zn-, Ga-, Ge-, and Se-like Au ions[J]. Atom Data Nucl. Data Tables, 2014, 100(6): 1357-1398. |