Welcome to Nuclear Fusion and Plasma Physics, Today is Share:

NUCLEAR FUSION AND PLASMA PHYSICS ›› 2015, Vol. 35 ›› Issue (2): 97-102.

• Plasma Physics •     Next Articles

Dispersion function for bump-on-tail distribution of energetic particles

ZHAO Kang, JIANG Hai-bing, HE Hong-da, HE Zhi-xiong   

  1. (1. Southwest University for Nationalities, Chengdu 610041; 2. Fujian University of Technology, Fuzhou 350108; 3. Southwestern Institute of Physics, Chengdu 610041)
  • Online:2015-06-15 Published:2015-06-15

高能量粒子尾隆分布情况下的色散函数研究

赵 康,蒋海斌,何宏达,何志雄   

  1. (1. 西南民族大学,成都 610041;2. 福建工程学院,福州 350108;3. 核工业西南物理研究院,成都 610041)
  • 作者简介:赵康(1978-),女,四川成都人,博士,主要从事电磁场理论及等离子体物理方面的研究工作。
  • 基金资助:

    国家自然科学基金(11247321,11175058,11105046);国家磁约束核聚变能发展研究专项(2013GB112009, 2014GB124004);西南民族大学中央高校基本科研业务费专项(13NZYQN11);福建省科技厅自然科学基金(2012J05001)

Abstract:

In general, the energy distribution of energetic particles is bump-on-tail when both the neutral beam injection and electron/ion cyclotron resonant heating are used in tokamak plasma experiment. It is easier to induce instability for energy distribution profile with positive energy gradient regions existing such as the bump-on-tail. Therefore, a new dispersion function is introduced in dispersion relation due to bump-on-tail of the energy distribution. The calculation method of the new dispersion function is studied. T results show that the real and imaginary parts of dispersion functions are odd and even functions respectively. There are 2 to 4 extremes for real parts of the dispersion function and the positions of the extremes are dependent on Δ , the gradient of the energy distribution, whereas there are 1 to 3 extremes for imaginary parts and the positions of these extremes are independent of Δ . Both the real and imaginary parts of the dispersion function go to zero when the arguments of Zt go to infinity. The calculated values agree very well with those given in dispersion function table when the bump-on-tail distribution goes to Maxwellian distribution.

Key words: Energetic particles, Bump-on-tail, Dispersion function

摘要:

当同时使用离子(或电子)回旋及中性束注入方式加热等离子体时,高能量粒子的能量分布函数一般应为尾部隆起(简称尾隆)分布。这种具有正能量梯度区域的分布函数更容易激发不稳定性,同时由于分布函数尾部隆起,在色散关系中引入了新的色散函数。主要研究了这种新色散函数的计算方法,结果表明:色散函数实部是关于原点对称的奇函数;而虚部则是关于纵轴对称的偶函数。色散函数的实部有2~4 个极值点且极值点的位置与尾隆分布函数的能量梯度Δ 有关、虚部有1~3 个极值点但极值点位置与Δ 无关。当其宗量趋于无穷大时,色散函数的值趋于零。当尾隆分布趋近于麦克斯韦分布时,用该方法计算的结果与色散函数表中给出的结果非常吻合。

关键词: 高能量粒子, 尾隆分布, 色散函数

CLC Number: