[1] Wagner F, Becker G, Behringer K, et al. Regime of improved confinement and high beta in neutral-beam-heated divertor discharges of the ASDEX tokamak [J].Phys. Rev. Lett., 1982, 49(19): 1408−1412.
[2] Duan X R, Dong J Q, Yan L W, et al. Preliminary results of ELMy H-mode experiments on the HL-2A tokamak [J].Nucl. Fusion, 2010, 50(9): 095011.
[3] ASDEX Team. The H-mode of ASDEX [J]. Nucl. Fusion,1989, 29(11): 1959−2040.
[4] Zohm H, Wagner F, Endler M, et al. Studies of edge localized modes on ASDEX [J]. Nucl. Fusion, 1992,32(3): 489−494.
[5] Wang L, Xu G S, Guo H Y, et al. Particle and power deposition on divertor targets in EAST H-mode plasmas[J]. Nucl. Fusion, 2012, 52(6): 063024.
[6] Eich T, Andrew P, Herrmann A, et al. ELM resolved energy distribution studies in the JET MKII gas-box divertor using infra-red thermography [J]. Plasma Phys.Contr. Fusion, 2007, 49: 573−604.
[7] Loarte A, Saibene G, Sartori R, et al. Characteristics of type I ELM energy and particle losses in existing devices and their extrapolation to ITER [J]. Plasma Phys. Contr.Fusion, 2003, 45: 1549−1569.
[8] Petrie T W, Evans T E, Brooks N H, et al. Results from radiating divertor experiments with RMP ELM suppression and mitigation [J]. Nucl. Fusion, 2011, 51(7):073003.
[9] Thornton A J, Kirk A, Cahyna P, et al. The effect of resonant magnetic perturbations on the divertor heat and particle fluxes in MAST [J]. Nucl. Fusion, 2014, 54(6):064011.
[10] Lang P T, Neuhauser J, Horton L D, et al. ELM frequency control by continuous small pellet injection in ASDEX Upgrade [J]. Nucl. Fusion, 2003, 43: 1110−1120.
[11] Baylor L R, Commaux N, Jernigan T C, et al. Reduction of edge-localized mode intensity using high-repetition-rate pellet injection in tokamak H-mode plasmas [J].Phys. Rev. Lett., 2013, 110(24): 245001.
[12] Rapp J, Garbet P M, Matthews G F, et al. Reduction of divertor heat load in JET ELMy H-modes using impurity seeding techniques [J]. Nucl. Fusion, 2004, 44: 312−319.
[13] Yao L H, Tang N Y, Cui Z Y, et al. Plasma behaviour with molecular beam injection in the HL-1M tokamak [J].Nucl. Fusion, 1998, 38(4): 631−638.
[14] 冯北滨, 姚良骅, 李伟, 等. HL-2A 装置偏滤器位形超声分子束注入深度观测 [J]. 核聚变与等离子体物理,2008, 28(2): 97−100.
[15] Yu D L, Chen C Y, Yao L H, et al. Penetration characteristics of supersonic molecular beam injection on HL-2A tokmak [J]. Nucl. Fusion, 2010, 50(3): 035009.
[16] Yan L W, Hong W Y, Cheng J, et al. Radiating divertor experiments in the HL-2A tokamak [J]. J. Nucl. Mater.,2009, 390−391: 246−249.
[17] 洪文玉, 严龙文, 程均, 等. HL-2A 装置送气和加料的脱靶特性 [J]. 核聚变与等离子体物理, 2008, 28(4):298−302.
[18] Gao J M, Li W, Xia Z W, et al. Analysis of divertor heat flux with infrared thermography during gas fuelling in the HL-2A tokamak [J]. Plasma Sci. Techn., 2013, 15(11):1103−1107.
[19] Xiao W W, Diamond P H, Zou X L, et al. ELM mitigation by supersonic molecular beam injection into the H-mode pedestal in the HL-2A tokamak [J]. Nucl.Fusion, 2012, 52(11): 114027.
[20] Xiao W W, Diamond P H, Kim W C, et al. ELM mitigation by supersonic molecular beam injection:KSTAR and HL-2A experiments and theory [J]. Nucl.Fusion, 2014, 54(2): 023003.
[21] Li W, Pan Y D, Yan L W, et al. Observation of heat flux to outer divertor plate on the HL-2A tokamak [A]. 34th EPS Conf. on Plasma Physics [C]. Warsaw, Poland, 2007.
[22] Gao J M, Li W, Xia Z W, et al. Reconstruction of heat flux on the HL-2A divertor plate with a threedimensional analysis model [J]. Chin. Phys. B, 2013,22(1): 015202.
[23] 洪文玉, 严龙文, 钱俊, 等. HL-2A 偏滤器位形的边缘等离子体特性 [J]. 核聚变与等离子体物理, 2006,26(2): 81−86.
[24] 李雪泓, 李伟, 刘仪. HL-2A 等离子体的热辐射测量[J]. 核聚变与等离子体物理, 2009, 29(1): 10−15.
[25] Daviot R, Gauthier E, Carpentier S, et al. Determination of a thermal property of carbon layers from IR measurements in JET NBI test bed using optimisation methods [J]. J. Nucl. Mater., 2009, 390−391: 1070−1073.
[26] Herrmann A, ASDEX Upgrade team. Limitations for divertor heat flux calculations of fast events in tokamaks[A]. 28th EPS Conference on Contr. Fusion and Plasma Physcis [C]. Funchal, Portugal, 2001. |