[1] Birdsall C K, Langdon A B. Plasma physics via computer simulation [M]. Bristol: Adam Hilger, 1991.
[2] Hockney R W, Eastwood J W. Computer simulation using particles [M]. Institute of Physics Publishing, 1988.
[3] Cohen B I, Langdon A B, A Friedman. Implicit time integration for plasma simulation [J]. J. Comput. Phys., 1982, 46: 15.
[4] Mason R J. Implicit moment PIC-hybrid simulation of collisional plasma [J]. J. Comput. Phys., 1983, 51: 484.
[5] Grismayer T, Mora P, Adam J C, et al. Electron kinetic effects in plasma expansion and ion acceleration [J]. Phys. Review E, 2008, 77: 066407.
[6] Crispel P, Degond P, Vignal M-H. An asymptotic preserving scheme for the two-fluid Euler-Poisson model in the quasi-neutral limit [J]. J. Comput. Phys., 2007, 223: 204.
[7] Crispel P, Degond P, Vignal M-H. Quasi-neutral fluid models for current-carrying plasmas [J]. J. Comput. Phys., 2005, 205: 408.
[8] Degond P, Deluzet F, Navoret L. An asymptotic stable particle-in-cell (PIC) scheme for collisionless plasma simulations near quasi-neutrality [J]. C. R. Acad. Sci. Paris., Ser. I, 2006, 343: 613.
[9] Friedman A, Parker S E, Ray S L et al. Multi-scale particle-in-cell plasma simulation [J]. J. Comput. Phys., 1991, 96: 54.
[10] Larsen E W, Morel J E, Jr W F M. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes [J]. J. Comput. Phys., 1987, 69: 283-324.
[11] Larsen E W, Morel J E. Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes Ⅱ [J]. J. Comput. Phys., 1989, 83: 212-236.
[12] Golse F, Jin S, Levermore C D. The convergence of numerical transfer schemes in diffusive regimes I: the discrete-ordinate method [J]. SIAM J. Num. Anal., 1999, 36: 1333–1369.
[13] Jin S. Efficient asymptotic-preserving (AP) schemes for some multi-scale kinetic equations [J]. SIAM J. Sci. Comp., 1999, 21: 441–454. |