[1] Li J G, Wan Y X. Present state of Chinese magnetic
fusion development and future plans [J]. Journal of
Fusion Energy, 2019, 38(1): 113.
[2] Zhuang G, Li G Q , Li J, et al. Progress of the CFETR
design [J]. Nuclear Fusion, 2019, 59(11): 112010.
[3] Song Y T, Li J G, Wan Y X, et al. Engineering design of
the CFETR machine [J]. Fusion Engineering and Design,
2022, 183(Oct.): 113247.
[4] Wagne D, Grünwald G, Leuterer F, et al. Status of the
new multi-frequency ECRH system for ASDEX upgrade
[J]. Nuclear Fusion, 2008, 48(5): 054006.
[5] Lennholm M, Agarici G, Berger-By G, et al. The
ECRH/ECCD system on Tore Supra, a major step
towards continuous operation [J]. Nuclear Fusion, 2003,
43(11): 1458.
[6] Cengher M, Lohr J, Simmerling P, et al. Status and plans
for the DIII-D ECH/ECCD system [J]. IEEE
Transactions on Plasma Science, 2020, 48(6): 1698.
[7] Erckmann V, Brand P, Braune H, et al. Electron
cyclotron heating for W7-X: physics and technology [J].
Fusion Science and Technology, 2007, 52(2): 291.
[8] Xu H D, Wang X J, Liu F K, et al. Development and
preliminary commissioning results of a long pulse 140 GHz ECRH system on EAST tokamak (invited) [J].
Plasma Science and Technology, 2016, 18(4): 442.
[9] Ramponi G, Farina D, Henderson M A, et al. ITER
ECRH-ECCD system capabilities for extended physics
applications [J]. Fusion Science and Technology, 2007,
52(2): 193.
[10] Tang Y Y, Wang X J, Zhang L Y, et al. Design status of
the ECRH system for CFETR [J]. Fusion Engineering
and Design, 2022, 182(Sep.): 113225.
[11] Zhang C, Liu F K, Wang X J, et al. Quasi-optical design
of EC H&CD launcher for CFETR [J]. Fusion
Engineering and Design, 2021, 166(May): 112295.
[12] Wei W, Wang X J, Li M H, et al. Evaluation of electron
cyclotron current drive performance for CFETR [J].
Plasma Science and Technology, 2019, 21(6): 065101.
[13] Zhu P, Li L, Fang Y, et al. MHD analysis on the physics
design of CFETR baseline scenarios [J]. Journal of
Fusion Energy, 2022, 41(1): 10.
[14] Takahashi K, Abe G, Kajiwara K, et al. Design
modification of ITER equatorial EC launcher for electron
cyclotron heating and current drive optimization [J].
Fusion Engineering and Design, 2015, 96‒97(Oct.): 602.
[15] Strauss D, Aiello G, Bertizzolo R, et al. Nearing final
design of the ITER EC H&CD Upper Launcher [J].
Fusion Engineering and Design, 2019, 146(Part A): 23.
[16] Lu K, Song Y T, Cai L J, et al. First steps of the overall
integration design of CFETR [J]. Fusion Engineering and
Design, 2021, 173(9‒10): 112928.
[17] Wang H L, Wang X J, Zhang C, et al. Investigation of
electron cyclotron wave absorption and current drive in
CFETR hybrid scenario plasmas [J]. Plasma Science and
Technology, 2023, 25(9): 095101.
[18] Wu Q R, Lu P, Zheng Y, et al. Neutronic analyses of
Upper port ECRH antenna system for CFETR [J]. Fusion
Engineering and Design, 2021, 162(Jan.): 112078.
[19] Wan Y X, Li J G, Liu Y, et al. Overview of the present
progress and activities on the CFETR [J]. Nuclear Fusion,
2017, 57(10): 102009.
[20] 戴淮初,姚达毛. CFETR 偏滤器模块远程遥操作支撑
结构设计与仿真分析 [J]. 核聚变与等离子体物理,
2019, 38(3): 323.
[21] Lu P, Wu Q R, Zhang L Y, et al. Operation and shutdown
dose rate analysis of CFETR ECRH system [J]. Fusion
Engineering and Design, 2020, 159(10): 111751.
[22] Cheng Y, Song Y T, Wu H P, et al. Overview of the
CFETR remote handling system and the development
progress [J]. Fusion Engineering and Design, 2022,
177(Apr.): 113060.
[23] Zhang L Y, Wang X J, Xu H D, et al. A new design of
launcher mirror for EAST electron cyclotron resonance
heating system [J]. Fusion Engineering and Design, 2021,
173(2): 112802.
[24] Vagnoni M, Chavan R, Gagliardi M, et al.
Thermo-mechanical analysis of an ITER ECH&CD
upper launcher mirror [J]. Fusion Engineering and
Design, 2018, 136(Part A): 766.
[25] Barabash V. Summary of material properties for
structural analysis of the ITER internal components [R].
ITER_D_23HL7T v.3.2, 2009.
[26] Liu S L, Li X, Ma X B, et al. Updated design of
water-cooled breeder blanket for CFETR [J]. Fusion
Engineering and Design, 2019, 146(7-8): 1716.
|