[1] Wan Y, Li J, Liu Y, et al. Overview of the present progress and activities on the CFETR [J]. Nucl. Fusion, 2017, 57(10): 102009.
[2] Zhuang G, Li G Q, Li J, et al. Progress of the CFETR design [J]. Nucl. Fusion, 2019, 59(11): 112010.
[3] Doyle E J, Houlberg W A, Kamada Y, et al. Progress in the ITER physics basischapter 2: Plasma confinement and transport [J]. Nucl. Fusion, 2007, 47(6): S18-S127.
[4] 袁保山. 托卡马克装置工程基础 [M]. 北京: 原子能出版社, 2011.
[5] Xu K, Ye M Y, Song Y T, et al. Neutronic analyses for CFETR with modular helium cooled lithium ceramic blanket [C]. 25th International Conference on Nuclear Engineering. 2017.
[6] Lu Y, Xu K, Ye M, et al. Neutronics analysis of helium cooled ceramic breeder blanket with s-shaped lithium zone and cooling plate for CFETR [J]. IEEE Transactions on Plasma Science, 2018, 46(5): 1471-1476.
[7] Favez J-Y. Enhancing the control of tokamaks via a continuous nonlinear control law [R]. École Polytechnique Fédérale de Lausanne (EPFL), 2004.
[8] 谭胜均, 张洋, 叶民友, 等. EAST上由垂直不稳定性引发破裂的分析与预测 [J]. 核聚变与等离子体物理, 2019, 39(2): 104-111.
[9] 刘磊. EAST垂直位移被动稳定及主动控制模拟与实验研究 [D]. 合肥: 中国科学技术大学, 2015.
[10] Humphreys D A, Casper T A, Eidietis N, et al. Experimental vertical stability studies for ITER performance and design guidance [J]. Nucl. Fusion, 2009, 49(11): 115003.
[11] Liu G J, Wan B N, Qian J P, et al. Effect of passive plates on vertical instability in the EAST tokamak [J]. Chinese Physics B, 2012, 21(8): 085201.
[12] Li B, Liu L, Guo Y, et al. Preliminary assessment of vertical instability with blanket in CFETR [J]. Fusion Engineering and Design, 2019, 148: 111295.
[13] Humphreys D, Ferron J, Bakhtiari M, et al. Development of ITER-relevant plasma control solutions at DIII-D [J]. Nucl. Fusion, 2007, 47(8): 943.
[14] Humphreys D A, Ferron J R, Hyatt A W, et al. DIII-D Integrated plasma control solutions for ITER and next-generation tokamaks [J]. Fusion Engineering and Design, 2008, 83(2-3): 193-197.
[15] Xiao B J, Yuan Q P, Humphreys D A, et al. Recent plasma control progress on EAST [J]. Fusion Engineering and Design, 2012, 87(12): 1887-1890.
[16] 张卡. 基于刚体模型的EAST等离子体控制仿真模拟 [D]. 合肥: 中国科学院合肥物质科学研究院, 2007.
[17] Hahn S-h, Welander A S, Yoon S W, et al. Progress and improvement of KSTAR plasma control using model-based control simulators [J]. Fusion Engineering and Design, 2014, 89(5): 542-547.
[18] Walker M L, Humphreys D A, Sammuli B, et al. Development environments for tokamak plasma control [C]. IEEE 26th Symposium on Fusion Engineering, 2015.
[19] Humphreys D A, Walker M L, Leuer J A. Minimal plasma response models for design of tokamak equilibrium controllers with high dynamic accuracy [C]. 41st Annual Meet of Division of PPAPS, 1999.
[20] Walker M L, Humphreys D A. Valid coordinate systems for linearized plasma shape response models in tokamaks [J]. Fusion Science and Technology, 2006, 50(4): 473-489.
[21] Luo Z P, Xiao B J, Leuer J A, et al. Eddy calculation and vacuum field reconstruction on EAST [J]. Plasma Science & Technology, 2011, 13(2): 145-152.
[22] Coutlis A, Bandyopadhyay I, Lister J B, et al. Measurement of the open loop plasma equilibrium response in TCV [J]. Nucl. Fusion, 1999, 39(5): 663-683.
[23] Sharma A S. Tokamak modelling and control [D]. University of London, 2002.
[24] Chen S L, Villone F, Xiao B J, et al. Equivalent axisymmetric plasma response models of EAST [J]. Plasma Phys. Contr. Fusion, 2016, 58(2): 025017.
[25] 陈树亮. 基于被动导体结构三维模型的EAST垂直不稳定性研究 [D]. 北京: 中国科学院大学, 2016.
[26] Li J, Wan Y. Present state of chinese magnetic fusion development and future plans [J]. Journal of Fusion Energy, 2019, 38(1): 113-124.
|