[1] Dobran F. Fusion energy conversion in magnetically confined plasma reactors[J]. Progress in Nuclear Energy,2012, 60(3): 89−116.
[2] Han L, Chang H P, Zhang J Y, et al. Numerical simulation on subcooled boiling heat transfer characteristics of water-cooled W/Cu divertors[J].Plasma Science and Technology, 2015, 17(4): 347−352.
[3] Domalapally P, Subba F. Computational thermal fluid dynamic analysis of Hypervapotron heat sink for high heat flux devices application[J]. Fusion Eng. Des., 2015,98−99: 1267−1270.
[4] Liu P, Peng X B, Song Y T, et al. Numerical simulation in a subcooled water flow boiling for one-sided high heat flux in reactor divertor[J]. Fusion Eng. Des., 2016, 112:587−593.
[5] Giancarli L, Bonal J P, Puma A L, et al. Conceptual design of a high temperature water-cooled divertor for a fusion power reactor[J]. Fusion Eng. Des., 2005, 75(11):383−386.
[6] Chen P, Newell T A, Jones B G. Heat transfer characteristics in subcooled flow boiling with hypervapotron[J]. Annals of Nuclear Energy, 2008, 35(6):1159−1166.
[7] Yan J, Bi Q, Liu Z, et al. Subcooled flow boiling heat transfer of water in a circular tube under high heat fluxes and high mass fluxes[J]. Fusion Eng. Des., 2015, 100:406−418.
[8] Sarafraz M M, Hormozi F. Scale formation and subcooled flow boiling heat transfer of CuO−−water nanofluid inside the vertical annulus[J]. Exp. Therm.Fluid Sci., 2014, 52(12): 205−214.
[9] Lee Taeseung, Lee Jong Hyuk, Jeong Yong Hoon, et al.Flow boiling critical heat flux characteristics of magnetic nanofluid at atmospheric pressure and low mass flux conditions[J]. Int. J. Heat Mass Transfer, 2013, 56(1−2):101−106.
[10] Boyd R D, Ekhlassi A, Cofie P, et al. High heat flux removal from a single-side heated monoblock using flow boiling[J]. Int. J. Heat Mass Transfer, 2004, 47(10):2183−2189.
[11] Li H, Chen J L, Li J G, et al. High heat load tests on W/Cu mock-ups and evaluation of their application to EAST device[J]. Fusion Eng. Des., 2009, 84(1): 1−4.
[12] Crescenzi F, Roccella S, Visca E, et al. Comparison between FEM and high heat flux thermal fatigue testing results of ITER divertor plasma facing mock-ups[J].Fusion Eng. Des., 2014, 89(7−8): 985−990.
[13] Bournonville Y, Grandotto M, Pascal-Ribot S, et al.Numerical simulation of swirl-tube cooling concept,application to the ITER project [J]. Fusion Eng. Des.,2009, 84(2): 501−504.
[14] Liu C, Tobita K. Numerical simulation analysis for the divertor plate of DEMO reactor [J]. Plasma Fusion Research, 2010.
[15] Pitts R A,Carpentier S, Escourbiac F, et al. A full tungsten divertor for ITER: physics issues and design status[J]. J.Nucl. Mater., 2013, 438: S48−S56.
[16] Lavieville J, Quemerais E, Mimouni S, et al. N:NEPTUNE CFD V1.0 theory manual [M]. EDF, 2005.
[17] Cole R. A photographic study of pool boiling in the region of the critical heat flux [J]. Aiche Journal, 1960,6(4): 533−538.
[18] Tolubinski V I, Kostanchuk D M. Vapour bubbles growth rate and heat transfer intensity at subcooled water boiling[C]. 4th International Heat Transfer Conference, Paris,France. 1970. |