欢迎访问《核聚变与等离子体物理》官方网站,今天是 分享到:

核聚变与等离子体物理 ›› 2025, Vol. 45 ›› Issue (3): 357-364.DOI: 10.16568/j.0254-6086.202503015

• 等离子体物理 • 上一篇    下一篇

HL-2A 装置密度极限下电磁不稳定性的实验观测

胡力文,陈 伟*,施培万,许健强   

  1. (核工业西南物理研究院,成都 610041)
  • 收稿日期:2024-01-16 修回日期:2024-12-17 出版日期:2025-09-15 发布日期:2025-09-29
  • 通讯作者: 陈伟(1979-),男,黑龙江兰西人,研究员,博士研究生导师,从事核聚变等离子体诊断和实验物理磁流体不稳 定性、快粒子物理、等离子体约束与输运研究。
  • 作者简介:胡力文(1999-),男,湖南常德人,硕士研究生,从事聚变等离子体密度极限和电磁不稳定性研究。
  • 基金资助:
    国家自然科学基金(12125502);ITER-CN 资助项目(2019YFE03020000);西物创新项目(202301XWCX001)

Experimental observation of electromagnetic instabilities under the density limit condition in the HL-2A tokamak

HU Li-wen, CHEN Wei, SHI Pei-wan, XU Jian-qiang   

  1. (Southwestern Institute of Physics, Chengdu 610041)
  • Received:2024-01-16 Revised:2024-12-17 Online:2025-09-15 Published:2025-09-29

摘要:

密度极限是等离子体的破裂机制之一,目前没有十分完善的理论可以解释所有的密度极限破裂。芯部电磁不稳定性在高密度等离子体中被激发是密度极限的物理机制之一。研究展示了在HL-2A 装置的高密度等离子体中观察到的电磁不稳定性。这些由压强梯度驱动的不稳定性在高密度等离子体中被激发并且靠近等离子体芯部,它们的频率大小与离子温度高低呈现正相关,表现出“楼梯式”的跳频行为且频率间隔固定。基于GENE 程序模拟分析表明,在高密度等离子体中激发的电磁不稳定性是阿尔芬离子温度梯度模。这些电磁不稳定性的增长率与压强、离子温度梯度及磁剪切有关,意味在未来燃烧等离子体中可以通过调节相关参数来实现有效控制,并进一步降低其对高密度/高比压等离子体约束性能的影响。

关键词: 密度极限, GENE, 阿尔芬离子温度梯度模

Abstract:

The density limit is one of the mechanisms of plasma disruption, and there is no very well-developed theory that can explain all the density limit disruptions. Core-located electromagnetic instability excited in high-density plasma may be one of the physical mechanisms of the density limit. In this paper, we show the electromagnetic instabilities observed in the high-density plasma of the HL-2A tokamak. These pressure gradient-driven instabilities are very easily excited in high-density plasmas and are localized in the plasma core, where their frequency is positively correlated with the ion temperature, and they often exhibit "staircase" frequency-hopping behavior with fixed frequency intervals. Simulations based on the GENE program show that the electromagnetic instabilities excited in high-density plasmas are Alfven ion temperature gradient modes (AITG). The growth rates of these electromagnetic instabilities are closely related to the pressure, ion temperature gradient, and magnetic shear, which implies that their effects on the confinement performance of high-density/high-pressure plasmas can be effectively controlled and further minimized by adjusting the relevant parameters in future burning plasmas.

Key words: Density limit, GENE, AITG

中图分类号: