[1] FREIDBERG J P. Plasma physics and fusion energy [M]. England: Cambridge University Press, 2008. 50-51.
[2] GRANETZ R S. Density threshold for magnetohydrodynamic activity in Alcator C [J]. Physical Review Letters, 1982, 49(9): 658.
[3] GREENWALD M, TERRY J L, WOLFE S M, et al. A new look at density limits in tokamaks [J]. Nuclear Fusion, 1988, 28(12): 2199-2207.
[4] GREENWALD M. Density limits in toroidal plasmas [J]. Plasma Physics and Controlled Fusion, 2002, 44(8): R27.
[5] TANG W M, CONNOR J W, HASTIE R J. Kineticballooning-mode theory in general geometry [J]. Nuclear Fusion, 1980, 20(11): 1439.
[6] ZONCA F, CHEN L, DONG J Q, et al. Existence of ion temperature gradient driven shear Alfvén instabilities in tokamaks [J]. Physics of Plasmas, 1999, 6(5): 1917-1924.
[7] MA C H, XU X Q. Global kinetic ballooning mode simulations in BOUT++ [J]. Nuclear Fusion, 2017, 57(1): 016002.
[8] BIGLARI H, CHEN L. Unified theory of resonant excitation of kinetic ballooning modes by energetic ions and alpha particles in tokamaks [J]. Physical Review Letters, 1991, 67(26): 3681-3684.
[9] TSAI S T, CHEN L. Theory of kinetic ballooning modes excited by energetic particles in tokamaks [J]. Physics of Fluids B: Plasma Physics, 1993, 5(9): 3284-3290.
[10] ZONCA F, CHEN L, SANTORO R A. Kinetic theory of low-frequency Alfvén modes in tokamaks [J]. Plasma Physics and Controlled Fusion, 1996, 38(11): 2011-2028.
[11] ZONCA F, CHEN L, SANTORO R A, et al. Existence of discrete modes in an unstable shear Alfvén continuous spectrum [J]. Plasma Physics and Controlled Fusion, 1998, 40(12): 2009-2021.
[12] CHANG Z, BUDNY R V, CHEN L, et al. First observation of alpha particle loss induced by kinetic ballooning modes in TFTR deuterium-tritium experiments [J]. Physical Review Letters, 1996, 76(7): 1071-1074.
[13] CHEN W, YU D L, MA R R, et al. Kinetic electromagnetic instabilities in an ITB plasma with weak magnetic shear [J]. Nuclear Fusion, 2018, 58(5): 056004-056113.
[14] JIAN X, CHEN J, DING S, et al. Experimental validation of a kinetic ballooning mode in high-performance high-bootstrap current fraction fusion plasmas [J]. Physical Review Letters, 2023, 131(14): 145101.
[15] ISHIZAWA A, IMADERA K, NAKAMURA Y, et al. Global gyrokinetic simulation of turbulence driven by kinetic ballooning mode [J]. Physics of Plasmas, 2019, 26(8): 082301.
[16] HEIDBRINK W W, VAN ZEELAND M A, AUSTIN M E, et al. ‘BAAE’ instabilities observed without fast ion drive [J]. Nuclear Fusion, 2020, 61(1): 016029.
[17] MA R, CHEN L, ZONCA F, et al. Theoretical studies of low-frequency Alfvén modes in tokamak plasmas [J]. Plasma Physics and Controlled Fusion, 2022, 64(3): 035019.
[18] WESSON J, CAMPBELL D J. Tokamaks [M]. England: Oxford University Press, 2011.
[19] JENKO F, DORLAND W, KOTSCHENREUTHER M, et al. Electron temperature gradient driven turbulence [J]. Physics of Plasmas, 2000, 7(5): 1904-1910.
[20] GOERLER T, LAPILLONNE X, BRUNNER S, et al. The global version of the gyrokinetic turbulence code GENE [J]. Journal of Computational Physics, 2011, 230(18): 7053-7071.
[21] CONNOR J W, HASTIE R J, TAYLOR J B. Shear, periodicity, and plasma ballooning modes [J]. Physical Review Letters, 1978, 40(6): 396.
[22] KIM J Y, HORTON W, DONG J Q. Electromagnetic effect on the toroidal ion temperature gradient mode [J]. Physics of Fluids B: Plasma Physics, 1993, 5(11): 4030-4039.
[23] XU J Q, CHEN W, PENG X D, et al. Gyrokinetic analysis of turbulent transport by electromagnetic turbulence in finite β plasmas with weak magnetic shear on HL-2A [J]. Nuclear Fusion, 2023, 63(12): 126031.
[24] MILLER R L, CHU M S, GREENE J M, et al. Noncircular, finite aspect ratio, local equilibrium model [J]. Physics of Plasmas, 1998, 5(4): 973-978.
[25] REDD A J, KRITZ A H, BATEMAN G, et al. Drift mode growth rates and associated transport [J]. Physics of Plasmas, 1999, 6(4): 1162-1167.
[26] WESSON J A, GILL R D, HUGON M, et al. Disruptions in JET [J]. Nuclear Fusion, 1989, 29(4): 641-666.
|