[1] 彭吴擎亮, 李强, 常永勤, 等. 核聚变堆偏滤器热沉材料研究现状及展望 [J]. 金属学报, 2021, 57(7): 14.
[2] MOU N Y, ZHANG Q, ZHANG X Y, et al. Fabrication and performance examination on explosively welded ODS- Cu/316 L clad plate for CFETR divertor heat sink [J]. Fusion Engineering and Design, 2022, 180(July): 113157.
[3] 王建豹, 练友运, 封范, 等. HL-2M 偏滤器CFC/CuCrZr靶板的非晶钎焊工艺研究 [J]. 核聚变与等离子体物理. 2019, 39(4): 331-337.
[4] FABRITSIEV S, ZINKLE S, Singh B. Evaluation of copper alloys for fusion reactor divertor and first wall components [J]. Journal of Nuclear Materials, 1996, 233-237(Part 1): 127-137.
[5] ZHANG F, LIU P, WANG G, et al. Study on creep-fatigue life of ODS-Cu as heat sink in divertor PFU [J]. Fusion Engineering and Design, 2023, 196(7-8): 114011.
[6] DAOUD A, VOGT J B, CHARKALUK E, et al. Anisotropy effects on the tensile and fatigue behaviour of an oxide dispersion strengthened copper alloy [J]. Materials Science and Engineering: A, 2012, 534(Feb.): 640-648.
[7] MA B, DING H, JIANG F, et al. Effect of process control agent on the synthesis of Cu-Y2O3 by mechanical alloying [J]. Nuclear Materials and Energy, 2024, 38(Mar.): 101599.
[8] QIN Y Q, ZHUANG Y, LUO L M, et al. Effect of alloying element Zr on microstructure and properties of Cu-Y2O3 composites [J]. Transactions of Nonferrous Metals Society of China, 2023, 33(11): 3418-3426.
[9] YAN Z Q, CHEN F, YE F X, et al. Microstructures and properties of Al2O3 dispersion-strengthened copper alloys prepared through different methods [J]. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(12): 1437-1443.
[10] 申玉田, 崔春翔, 孟凡斌, 等. Cu-Al 合金内氧化及Cu氧化行为的热力学分析 [J]. 粉末冶金技术, 2001,19(1): 28.
[11] 吴浩, 甘雪萍. 喷雾干燥法制备Cu-Al2O3 复合粉末及其复合材料的组织与性能 [J]. 粉末冶金材料科学与工程, 2023, 28(1): 74-82.
[12] TAHA M A, ZAWRAH M F. Effect of nano ZrO2 on strengthening and electrical properties of Cu-matrix nanocomposits prepared by mechanical alloying [J]. Ceramics International, 2017, 43(15): 12698-12704.
[13] KE J, XIE Z, LIU R, et al. Development of Y2O3 dispersion-strengthened copper alloy by sol-gel method [J]. Materials, 2022, 15(7): 2416.
[14] NAGORKA M S, LEVI C G, LUCAS G E, et al. The potential of rapid solidification in oxide-dispersionstrengthened copper alloy development [J]. Materials Science and Engineering: A, 1991, 142(2): 277-289.
[15] SHENG X Y, MA B, LUO L M, et al. Multiphase strengthening mechanism of Cu-Y2O3/W composites prepared by mechanical alloying [J]. Nuclear Materials and Energy, 2024, 39(June): 101644.
[16] AGHAMIRI S M S, OONO N, UKAI S, et al. Microstructure and mechanical properties of mechanically alloyed ODS copper alloy for fusion material application [J]. Nuclear Materials and Energy, 2018, 15(May): 17-22.
[17] KAI W, HO T H, HSIEH H H, et al. Oxidation behavior of CuZr-based glassy alloys at 400℃ to 500℃ in dry air [J]. Metallurgical and Materials Transactions A, 2008, 39(8): 1838-1846.
[18] NOTO H, YAMADA T, HISHINUMA Y, et al. Effect of atmospheric control during MA-HIP process on mechanical properties of oxide dispersion-strengthened Cu alloy [J]. Fusion Engineering and Design, 2017, 124(Nov.): 1024-1027.
|