[1] Li Q. The development progress of HL-2M tokamak [C]. USA, Proc. 25th Symp. Fusion Eng.(SOFE), TPO-113, San Fr, June 10–14, 2013.
[2] Zheng G Y, Cai L Z, Duan X R, et al. Investigations on the heat flux and impurity for the HL-2M divertor [J].Nucl. Fusion, 2006, 56: 126013.
[3] Zheng G Y, Xu X Q, Ryutov D D, et al. Magnetic configuration flexibility of snowflake divertor for HL-2M [J]. Fusion Eng. Des., 2014, 89: 2621–2627.
[4] Li J X, Zheng G Y, Song X M. Plasma start-up design for initial discharges in HL-2M [J]. Fusion Engineering
and Design, 2020, 150: 111366.
[5] 李佳鲜, 张锦华, 宋显明, 等. HL-2M 初始放电调试方案设计 [R]. SWIP/A-2020067.
[6] Lao L L, John H St, Stambaugh R D, et al.Reconstruction of current profile parameters and plasma
shapes in tokamaks [J.] Nucl. Fusion, 1985, 25(10): 1421.
[7] Tanga A, Christiansen J P, Cordey J G, et al. Tokamak start-up [M]. New York: Plenum Press, 1986. 159.
[8] Yoshino R, Seki M. Low electric field (0.08V·m−1)plasma current start-up in JT-60U [J]. Plasma Phys.
Contr. Fusion, 1997, 39(1): 205–222.
[9] Lloyd B, Jackson G L, Taylor T S, et al. Low voltage ohmic and ECH-assisted start up in DIII-D [J]. Nucl.
Fusion, 1991, 31: 2031.
[10] Leuer J A, Wesley J C. ITER plasma startup modeling[J]. Proc. 15th IEEE/NPSS Symp. Fusion Eng., Hyannis,
Piscataway, NJ, 1993, 2: 629.
[11] Lloyd B, Carolan P G, Warrick C D. ECRH-assisted start-up in ITER [J]. Plasma Phys. Contr. Fusion, 1996,
38: 1627–1643.
[12] ITER Physics Expert Group on Disruptions, Plasma Control, and MHD, et al. Chapter 8: Plasma operation
and control [J]. Nucl. Fusion, 1999, 39(12): 2251.
[13] EAST Team, Leuer J A, Xiao B J, et al. Tokamak startup modeling and design for EAST first plasma campaign [J]. Fusion Sci. Tech., 2010, 57(1): 48–65.
[14] Leuer J A, Eidietis N W, Ferron J R, et al. Plasma startup design of fully superconducting tokamaks EAST
and KSTAR with implications for ITER [J]. IEEE Transactions on Plasma Science, 2010, 38(3): 333L.
|