[1] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Phys. Rev. Lett., 1987, 58(20): 2059–2060.
[2] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Phys. Rev. Lett., 1987, 58(23): 2486–2489.
[3] Ding G W, Liu S B, Zhang H F, et al. Tunable electromagnetically induced transparency at terahertz frequencies in coupled graphene metamaterial[J]. Chinese Physics B, 2015, 24(11): 534–538.
[4] Hojo H, Mase A. Dispersion Relation of electromagnetic waves in one-dimensional plasma photonic crystals[J]. Journal of Plasma & Fusion Research, 2004, 80(2): 89– 90.
[5] Vala A S, Hoseini N, Sedghi A A, et al. Detailed study of the flat bands appeared in two-dimensional magnetic photonic crystals with square symmetry[J]. Optics Communications, 2011, 284(19): 4514–4519.
[6] Ooi C H R, Yeung T C A, Kam C H, et al. Photonic band gap in a superconductor-dielectric superlattice[J]. Phys. Rev. B, 2000, 61(9): 5920–5923.
[7] Sakai O, Tachibana K. Plasmas as metamaterials: a review[J]. Plasma Sources Science & Technology, 2012, 21(1): 13001–13018.
[8] Qi L, Yang Z, Fu T. Defect modes in one-dimensional magnetized plasma photonic crystals with a dielectric defect layer[J]. Physics of Plasmas, 2012, 19(1): 012509.
[9] Qi L M, Yang Z. Modified plane wave method analysis of dielectric plasma photonic crystal[J]. Progress in Electromagnetics Research, 2009, 91(4): 319–332.
[10] Zhang H F, Liu S B, Kong X K, et al. The characteristics of photonic band gaps for three-dimensional unmagnetized dielectric plasma photonic crystals with simple-cubic lattice[J]. Optics Communications, 2013, 288(1): 82–90.
[11] Zhang H F, Liu S B, Kong X K, et al. Enhancement of omnidirectional photonic band gaps in one-dimensional dielectric plasma photonic crystals with a matching layer
[J]. Physics of Plasmas, 2012, 19(2): 022103.
[12] Li C, Liu S, Kong X, et al. A novel comb-like plasma photonic crystal filter in the presence of evanescent wave[J]. Plasma Science, IEEE Transactions on, 2011, 39(10): 1969–1973.
[13] Zhang H F, Liu S B, Kong X K, et al. Dispersion properties of two-dimensional plasma photonic crystals with periodically external magnetic field[J]. Solid State Communications, 2012, 152(14): 1221–1229.
[14] Qi L, Yang Z, Lan F, et al. Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals[J]. Physics of Plasmas, 2010, 17(4): 042501.
[15] 章海锋, 郑建平, 朱荣军. 可调谐一维三元磁化等离子体光子晶体禁带特性研究[J]. 核聚变与等离子体物理, 2012, 32(2): 133–139.
[16] Yu Y, Chen Y, Hu H, et al. Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry[J]. Laser & Photonics Reviews, 2015, 9(2): 241–247.
[17] Victor D, Kawakatsu M N. Nonreciprocal optical divider based on two-dimensional photonic crystal and magneto- optical cavity[J]. Applied Optics, 2012, 51(24): 5917.
[18] 方云团, 胡坚霞, 何韩庆. 基于磁光效应和金属等离子体调制下的非互易微腔模式光学隔离器[J]. 光子学报, 2015, 42(6): 0623002.
[19] 汤月明, 方云团, 吕翠红, 等. 光子晶体磁性微腔非对称耦合的非互易传输[J]. 中国激光, 2015, 42(6): 0606003.
[20] Drezdzon S M, Tomoyuki Y. On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff[J]. Optics Express, 2009, 17(11): 9276. |