[1] Heidbrink W W, Sadler G J. The behaviour of fast ions in tokamak experiments[J]. Nucl. Fusion, 1994, 34: 535.
[2] Chen L, Zonca F. Theory of shear Alfvén waves in toroidal plasmas[J]. Phys. Scr., 1995, T60: 81.
[3] Zonca F, Chen L. Destabilization of energetic particle modes by localized particle sources[J]. Phys. Plasmas,2000, 7: 4600.
[4] Heidbrink W W, Gorelenkov N N, Murakami M. Beamdriven energetic particle modes in advanced tokamak Plasmas[J]. Nucl. Fusion, 2002, 42 : 972.
[5] Fredrickson E, Chen L, White R. Bounce precession fishbones in the national spherical torus experiment [J].Nucl. Fusion, 2003, 43: 1258.
[6] Cheng C Z, Chen L, Chance M S. High-n ideal and resistive shear Alfvén waves in tokamak[J]. Ann. Phys.(N.Y), 1985, 161: 21.
[7] Kimura H. Alfvén eigenmode and energetic particle research in JT-60U[J]. Nucl. Fusion, 1998, 38: 1303.
[8] Chen L. Theory of magnetohydrodynamic instabilities excited by energetic particles in tokamaks[J]. Phys.Plasmas, 1994, 1: 1519.
[9] Hu S, Chen L. Discrete Alfvén eigenmodes in high-β toroidal plasmas[J]. Phys. Plasmas, 2004, 11: 1.
[10] 姚龙宝, 胡双辉, 王一如, 等. 现行托卡马克参数下的离散阿尔芬本征模[J]. 核聚变与等离子体物理, 2012,32(1): 8.14.
[11] 王一如, 胡双辉, 姚龙宝, 等. DⅢ-D 高性能运行参数下的离散阿尔芬本征模[J]. 核聚变与等离子体物理,2012, 32(2): 140.147.
[12] Lee Y C, Van Dam J W. In Proceedings of the finite beta theory workshop[M]. Varenna: U.S DOECONF-7709167,1997. 93.
[13] Connor J W, Hastie R J, Taylor J B. High mode number stability of an axisymmetric toroidal plasma[J]. Proc. R.Soc. London, Ser. A, 1979, 365: 1.
[14] Connor J W, Hastie R J, Taylor J B. Shear periodicity and plasma ballooning modes[J]. Phys. Rev. Lett., 1978, 40:396.
[15] Chen L. Theory of magnetohydrodynamic instabilities excited by energetic particles in tokamaks[J]. Phys.Plasmas, 1994, 1: 1519.
[16] Chen L, Hasegawa A. Kinetic theory of geomagnetic pulsations internal excitations by energetic particles[J]. J.Geophys. Res., 1991, 96: 1503.
[17] Hu S, Chen L. Discrete Alfvén eigenmodes excited by energetic particles in high-β toroidal plasmas[J]. Plasma Phys. Contr. Fusion, 2005, 47: 1253.
[18] Kishimoto H, Ishida S, Kikuchi M, et al. Advanced tokamak research on JT-60[J]. Nucl. Fusion, 2005, 45:986.1023.
[19] Heidbrink W W. Basic physics of Alfvén instabilities driven by energetic particles in toroidally confined plasmas[J]. Physics of Plamas, 2008, 15: 05501.
[20] Shinohara K, Takechi M, Ishikawa M, et al. Recent progress of Alfvén eigenmode experiments using N-NB in JT-60U tokamak[J]. Nucl. Fusion, 2002, 42: 942.948.
[21] Kamada Y, Isayama A, Oikawa T, et al. Long sustainment of JT-60U Plamas with high integrated performance[J].Nuclear Fusion, 1999, 39: 1845.
[22] Kamada Y, Takenaga H, Isayama A, et al. Pedestal Charateristics and extended high-βp ELMy H-mode regime in JT-60U[J]. Plasma Phys. Contr. Fusion, 2002,44: A279.A286.
[23] Ishida S, Fujita T, Akasaka H, et al. Achievement of high fusion performance in JT-60U reversed shear discharges[J]. Phy. Rev. Lett., 1997, 79: 3917.
[24] Fujita T, Kamada Y, Ide S, et al . Sustainment of high confinement in JT-60U reversed shear plamas[J]. Nucl.Fusion, 2002, 42: 180.186.
[25] Kamada Y, Barabaschi P, Ishida S, et al. Plama regimes and research goals of JT-60SA towards ITER and DEMO[J]. Nucl. Fusion, 2011, 51: 073011.
[26] Fujita T, Tamai H, Matsukawa M, et al. Design optimization for plasma performance and assessment of operation regimes in JT-60SA[J]. Nucl. Fusion, 2007, 47:1512.1523. |