[1] Vahedi V, Lieberman M A, Alves M V, et al. A one-dimensional collisional model for plasma-immersion ion implantation[J]. J. Appl. Phys., 1991, 69(4): 2008-2014.
[2] Vahedi V, Surendra M. A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges[J]. Comp. Phys. Commun., 1995, 87: 179-198.
[3] Wang D Z, Ma T C, Gong Y. A Monte Carlo simulation model for plasma source ion implantation[J]. J. Appl. Phys., 1993, 73(9): 4171-4175.
[4] Wang D Z. A theoretical model for neutral velocity distributions at a planar target in plasma source ion implantation[J]. J. Appl. Phys., 1999, 15(8): 3949-3951.
[5] Birdsall C K. Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC[J]. IEEE Transactions on Plasma Science, 1991, 19(2): 65-85.
[6] Cramer W H. Elastic and inelastic scattering of low-velocity ions: Ne+ in A, A+ in Ne, and A+ in A+ [J]. Journal of Chemical Physics, 1959, 30(3): 641-642.
[7] Lin S L, Bardsley J N. Monte Carlo simulation of ion motion in drift tubes [J]. Journal of Chemical Physics, 1977, 66(2): 435-445.
[8] Boeuf J P, Marode E. A Monte Carlo analysis of an electron swarm in a non-uniform field: the cathode region of a glow discharge in helium[J]. Journal of Physics D: Applied Physics, 1982, 15: 2169-2187.
[9] Mändl S, Günel R, Möller W. Sheath and presheath dynamics in plasma immersion ion implantation[J]. Journal of Physics D: Applied Physics, 1998, 31: 1109-1117.
[10] Briehl B, Urbassek H M. Simulation of sheath and presheath dynamics in PIII[J]. Surface and Coatings Technology, 2002, 156: 131-135. |