[1] Masaya S, Takayuki W. Numerical investigation of cooling effect on platinum nanoparticle formation in inductively coupled thermal plasmas[J]. Journal of Applied Physics, 2008, 103(7): 4903.
[2] Mermet J M, Trassy C. A plasma torch configuration for inductively coupled plasma as a source in optical emission spectroscopy and atomic absorption spectro- scopy[J]. Applied Spectroscopy, 1977, 31(3): 237-239.
[3] Pierre P, Jean F B. A model for ultrafine powder production in a plasma reactor[J]. Plasma Chemistry and Plasma Processing, 1991, 11(3): 371-38.
[4] Laha T, Balani K, Agarwal A, et al. Synthesis of nano- structures spherical aluminum oxide powders by plasma engineering[J]. Metallurgical and Materials Transactions A, 2005, 36(2): 301-309.
[5] 陈熙. 热等离子体传热与流动[M]. 北京: 科学出版社, 2009. 353-370.
[6] Davide B, Vittorio C, Emanuele G, et al. Comparison of different techniques for the FLUENT based treatment of the electromagnetic field in inductively coupled plasma torches[J]. The European Physical Journal D, 2003, 27: 55-72.
[7] 张凯, 王瑞金, 王刚. FLUENT技术基础与应用实例[M]. 北京: 清华大学出版社, 2010. 265-268.
[8] Fluent Inc. FLUENT 6.3 UDF Manual[Z]. 2006.
[9] EDDIE FRANK (TREY) HOLIK III. Simulation results of an inductively-coupled RF plasma torch in two and three dimensions for producing a metal matrix composite for nuclear fuel cladding[D]. Texas: Angelo State University, 2008. 70-74.
[10] ANSYS Inc. GAMBIT 2.3.30, CFD Mes[hing Software[Z]. 2006. |