[1] Makabe T. Advances in low temperature rf plasmas: basis for process design[M]. Amsterdam: Elsevier, 2002.
[2] Birdsall C K, Langdon A B. Plasma physics via computer simulation[M]. New York: McGraw-Hill, 1985.
[3] Tajima T. Computational plasma physics[M]. Redwood City: Addison-Wesley, 1988.
[4] Tien P K, Moshman J. J. Monte Carlo calculation of noise near the potential minimum of a high-frequency diode[J]. Appl. Phys., 1956, 27: 1067.
[5] Buneman O. Dissipation of currents in ionized media[J]. Phys. Rev., 1959,115: 503.
[6] Birdsall C K, Bridges W B. Space-charge instabilities in electron diodes and plasma converters[J]. J. Appl. Phys., 1961, 32: 2611.
[7] Dawson J M. One-dimensional plasma model[J]. Phys. Fluids, 1962, 2: 445.
[8] Graves D B, Jensen K F. A continuum model of DC and RF discharges[J]. IEEE Trans. Plasma Sci., 1986, 14: 92.
[9] Graves D B. J. Fluid model simulations of a 13.56MHz rf discharge: time and space dependence of rates of electron impact excitation[J]. Appl. Phys., 1987, 62: 88.
[10] Park S K, Economou D J. J. Analysis of low pressure rf glow discharges using a continuum model[J]. Appl. Phys., 1990, 68: 3904.
[11] Makabe T, Nakano N. Modeling and diagnostics of the structure of rf glow discharges in Ar at 13.56 MHz[J]. Phys. Rev. A, 1992, 45: 2520.
[12] Ventzek P L G, Hoekstra R J, Kushner M J. J. Two-dimensional modeling of high plasma density inductively coupled sources for materials processing[J]. Vac. Sci. Techn. B, 1994, 12: 461.
[13] Deshmukh S and Economou D J. J. Remote plasma etching reactors: modeling and experiment[J]. Vac. Sci. Technol. B, 1993, 11: 206.
[14] Paranjpe A P J. Modeling an inductively coupled plasma source[J]. Vac. Sci. Techn. A , 1994, 12: 1221.
[15] Kondo K, Kuroda H, Makabe T. Spatiotemporal characteristics determined by a relaxation continuum model of an inductively coupled plasma[J]. Appl. Phys. Lett., 1994, 65: 31.
[16] Birdsall C K. Particle-in-cell charged-particle simulat- ions, plus Monte Carlo collisions with neutral atoms, PIC-MCC[J]. IEEE Trans. Plasma Sci., 19: 65, 1991.
[17] Surendra M, Graves D B. Particle simulations of radio-frequency glow discharges[J]. IEEE Trans. Plasma Sci., 1991, 19: 144.
[18] Turner M M, Hopkins H B. Anomalous sheath heating in a low pressure rf discharge in nitrogen[J]. Phys. Rev. Lett., 1992, 69: 3511.
[19] Verboncoeur J P, Alves M V, Vahedi V, et al. Propagator methods for plasma simulations[J]. J. Comput. Phys., 1993, 104: 321.
[20] Vahedi V, Surendra M. Monte Carlo collision model for particle-in-cell method: Application to argon and. oxygen discharges[J]. Comput. Phys. Commun., 1995, 87: 179.
[21] Boeuf J P. Numerical model of rf glow discharges[J]. Phys. Rev. A, 1987, 36: 2782.
[22] Kinder R L, Ellingboe A R, Kushner M J. H- to W-mode transitions and properties of a multimode helicon plasma reactor[J]. Plasma Sources Sci. Techn., 2003, 12: 561.
[23] Gogolides E, Sawin H H. Continuum modeling of radio-frequency glow discharges. II. Parametric studies and sensitivity analysis[J]. J. Appl. Phys., 1992, 72: 3971.
[24] Kim H C, Yang S S, Lee J K. Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning[J]. J. Appl. Phys., 2003, 93: 9516.
[25] Sadiku M. Numerical techniques in electromagnetics[M]. Boca Raton, FL: CRC Press, 2001.
[26] Scharfetter D, Gummel H. Large-signal analysis of a silicon read diode oscillator[J]. IEEE Trans. Electron Devices, 1969, 16: 64.
[27] Selberherr S. Analysis and simulation of semiconductor devices[M]. Wien: Springer, 1984.
[28] Passchier J D P, Goedheer W J. A two-dimensional fluid model for an argon rf discharge[J]. J. Appl. Phys., 1993, 74: 3744.
[29] Kushner M J. Modeling of microdischarge devices: pyramidal structures[J]. J. Appl. Phys., 2004, 95: 846.
[30] Iza F, Yang S S, Kim H C, Lee J K. The mechanism of striation formation in plasma display panels[J]. J. Appl. Phys., 2005, 98: 302.
[31] 张雄, 屠彦, 杨兰兰. 三维PDP 放电过程数值模拟软件[J]. 光电子技术, 2004, 24(4):214.
[32] 屠彦, 张雄, 杨兰兰. 新型彩色等离子体放电单元放电特性的三维模拟[J]. 真空科学与技术, 2002, 22(5): 321-325.
[33] Hockney R W, Eastwood J W. Computer simulation using particles[M]. New York: McGraw-Hill, 1981.
[34] Verboncoeur J P. Particle simulation of plasmas: review and advances[J]. Plasma Phys. Contr. Fusion, 2005, 47: A231.
[35] Langdon A B. Effects of the spatial grid in simulation plasmas[J]. J. Comput. Phys., 1970, 6: 247.
[36] Langdon A B, Birdsall C K. Theory of plasma simulation using finite-size particles[J]. Phys. Fluids, 1970, 13: 2115.
[37] Okuda H. Non-physical noise and instabilities in Plasma simulation due to a spatial grid[J]. J. Comput. Phys., 1972, 10: 475.
[38] Chen L, Langdon A B, Birdsall C K. Reduction of the grid effects in simulation plasmas[J]. J. Comput. Phys., 1974, 14: 200.
[39] Skullerud H R. The stochastic computer simulation of ion motion in a gas subjected to a constant electric field[J]. Br. J. Appl. Phys., 1968, 1: 1567.
[40] Kawamura E, Birdsall C K, Vahedi V. Physical and numerical methods of speeding up particle codes and paralleling as applied to RF discharges[J]. Plasma Sources Sci. Techn., 2000, 9: 413.
[41] Hitchon W N G. Plasma processes for semiconductor fabrication[M]. Cambridge: Cambridge University Press, 1999. 161.
[42] Vahedi V, DiPeso G, Birdsall C K, et al. Capacitive RF discharges modelled by particle-in-cell Monte Carlo simulation. I. Analysis of numerical techniques[J]. Plasma Sources Sci. Techn., 1993, 2: 261.
[43] Manuilenko O. Particle and fluid simulations of low-temperature plasma discharges[Z]. Private commu- nication, 2004.
[44] Meyer P, Wunner G. Asynchronous cycling as a convergence acceleration method in particle simulation of direct current glow discharges[J]. Phys. Plasmas, 1997, 4: 3152.
[45] Shon C H, Lee H J, Lee J K. Method to increase the simulation speed of particle-in-cell (PIC) code [J]. Comput. Phys. Commun., 2001, 141: 322.
[46] Sommerer T J, Kushner M J. Numerical investigation of the kinetics and chemistry of rf glow discharge plasmas sustained in He, N2, O2, He/N2/O2, He/CF4/O2, and SiH4/ NH3 using a Monte Carlo-fluid hybrid model[J]. J. Appl. Phys., 1992, 71: 1654.
[47] Lee J K, Birdsall C K. Velocity space ring-plasma instability, magnetized, Part II: simulation[J]. Phys. Fluids, 1979, 22: 1315.
[48] Porteous R K, Graves D B. Modeling and simulation of magnetically confined low-pressure plasmas in two dimensions[J]. IEEE Trans. Plasma Sci., 1991, 19: 204.
[49] 袁忠才, 时家明, 许波. 四阳极装置的辉光放电特性[J]. 核聚变与等离子体物理, 2006, 26(2): 146.
[50] 袁忠才, 时家明. PIC/MCC数值模拟四阳极直流辉光放电[J]. 核聚变与等离子体物理, 2005, 25(4) :305. |