[1] Johnson J L,Dalhed H E, Greene J M,et al,Numerical determination of axisymmetric toroidal MHD equilibria[J].J.Comput.Phys.,1979,32:212.
[2] Delucia J,Jardin S C,Todd A M M.An iterative metric method for solving the inverse tokamak equilibrium problem[J].J.Comput.Phys.,1980,37:183.
[3] 李芳著,高庆弟,张锦华.HL-2A装置位形及垂直不稳定性控制[J ].核聚变与等离子体物理,2002 , 22 :199.
[4] Tokuda S , Takeda T , Okamoto M. Neoclassical MHD equilibria with ohmic current [J ]. J Phys. Soc. Japan , 1989 , 58(3) :871.
[5] Miller R L ,Lin-Liu Y R ,Turnbull A D , et al. Stable equilibria for bootstrap-current-driven low aspect ratio tokamake[J ].Phys.Plasmas ,1997 ,4 :1062.
[6] Lin-Liu Y R,Turnbull A D,Miller R L,etal. A class of high equilibria in strongly shaped finite aspect ratio tokamak plasmas [J ]. Phys. Plasmas, 2003 ,
10 :790.
[7] Kessel C E. Bootstrap current in tokamaks [J ]. Nucl. Fusion , 1994 , 34 :1221.
[8] 龚学余,石秉仁,张锦华,等. Tokamak中自举电流的准直性[J ].物理学报,2002 , 51 :2547.
[9] Grenne J M , Johnson J L , Weimer K E. Tokamak equilibrium [J ]. Phys. Fluids , 1971 , 14 :671.
[10 ] Callen J S , Dory R A. Magnetohydrodynamic equilibria in sharply curved devices [J ]. Phys. Fluids , 1972 , 15 :1523.
[11 ] Okada O. Equilibrium and stability of tokamak with arbitrary cross section [J ]. Phys. Fluids , 1976 , 19 :2034.
[12 ] Shi Bing-ren. Analytic description of tokamak equilibrium sustained by high fraction bootstrap current [J ]. Chin.Phys. ,2003 , 12(6) :626. |