[1] 杜红飞, 陈德鸿, 蒋洁琼, 等. 基于GDT的14 MeV中子源初步设计研究 [J]. 核科学与工程, 2012, 32(1): 68.
[2] 陈德鸿, 杜红飞, 蒋洁琼, 等. 基于GDT的聚变裂变混合堆堆芯参数初步设计研究 [J]. 核科学与工程, 2012, 32(1): 63.
[3] ZENG Q, CHEN D, WANG M.
High-field neutral beam injection for improving the Q of a gas dynamic
trap-based fusion neutron source [J]. Nuclear Fusion, 2017, 57(12): 126059.
[4] 曾秋孙, 邹小亮, 廉超, 等. GDT聚变中子源驱动的嬗变系统的初步物理设计与包层中子学分析 [J]. 核科学与工程, 2018, 38(2): 217.
[5] 孙新宇, 王海霞, 曾秋孙, 等. GDT聚变中子源氚燃料循环初步设计与分析 [J]. 核科学与工程, 2020, 40(2): 244.
[6] YANG W J, ZENG Q S, CHEN C, et
al. Shielding design and neutronics calculation of the GDT based fusion neutron
source ALIANCE [J]. Fusion Engineering and Design, 2021, 164(2-3): 112221.
[7] BAGRYANSKY P A, CHEN Z,
KOTELNIKOV I A, et al. Development strategy for steady-state fusion volumetric
neutron source based on the gas-dynamic trap [J]. Nuclear Fusion, 2020, 60(3):
036005.
[8] KOTELNIKOV I, CHEN Z,
BAGRYANSKY P, et al. Summary of the 2nd International Workshop on Gas-Dynamic
Trap based Fusion Neutron Source (GDT-FNS) [J]. Nuclear Fusion, 2020, 60(6):
067001.
[9] CHEN Z, BAGRYANSKY P, ZENG Q,
et al. Summary of the 3rd International Workshop on Gas-Dynamic Trap based
Fusion Neutron Source (GDT-FNS) [J]. Nuclear Fusion, 2022, 62(6): 067001.
[10] YU J. ALIANCE: A route to
fusion volumetric neutron source [R]. 3rd International Workshop on Gas Dynamic
Trap based Fusion Neutron Source, 2021.
[11] YAKOVLEV D, CHEN Z, BAGRYANSKY
P, et al. Conceptual design of the ALIANCE-T mirror experiment [J]. Nuclear
Fusion, 2022, 62(7): 076017.
[12] 赵培福, 陆志鸿, 曾建尔, 等. HL-1M装置的ICRH系统 [J]. 核聚变与等离子体物理, 2001, 21(2): 107.
[13] KO W H, HAGISAWA K, KIM B C,
et al. The measurements of ion currents and ion energy distributions in the
hanbit mirror plasma heated by ICRF [J]. Fusion Science and Technology, 2003,
43(1T): 268.
[14] PRIKHODKO V, IVANOV A A,
SKOVORODIN D I. An assessment of the neutron production boosting in the GDT based
neutron source with application of an auxiliary RF heating
[R]. International Mini-Workshop on Open Magnetic Systems for Plasma
Confinement (OS-2021), 2021.
[15] LIU M, YI H, LIN M, et al. Ion
cyclotron resonance heating (ICRH) systems for the Keda Mirror with AXisymmetry
(KMAX) [J]. Review of Scientific Instruments, 2017, 88(5): 053505.
[16] LIU M, YI H, ZHU G, et al. Ion
cyclotron resonant heating in the central cell of the Keda Mirror with
AXisymmetricity (KMAX) [J]. Physics of Plasmas, 2018, 25(8): 082515.
[17] HIRATA M, ITAGAKI J, IKEZOE R,
et al. Investigation of ICRF heating effect in anchor region on GAMMA 10/PDX [J].
Plasma and Fusion Research, 2019, 14(Mar.): 2402055.
[18] KWON M, BAK J G, CHOH K K, et
al. RF-heating and plasma confinement studies in the HANBIT mirror device [J].
Nuclear Fusion, 2003, 43(8): 686.
[19] ICHIMURA M, CHO T, HIGAKI H,
et al. ICRF experiments and potential formation on the GAMMA 10 tandem mirror [J].
Plasma Science & Technology, 2006, 8(1): 87.
[20] DIMONTE G, MOLVIK A W, BARTER J,
et al. Ion-Cyclotron Heating in Tmx-U [J]. Nuclear Fusion, 1987, 27(12): 1959.
[21] GOLOVATO S N, BRAU K, CASEY J,
et al. Stability of plasmas sustained by ion cyclotron wave excitation in the
central cell of the Tara tandem mirror [J]. Physics of Fluids B, 1989, 1(4):
851.
[22] WILLIAM J, EMRICH JR. First
Results of the Gasdynamic Mirror Fusion Propulsion Experiment [J]. AIP
Conference Proceedings, 2003, 654(1): 483.
[23] TANG R, GALLIMORE A D, KAMMASH
T. Design and results of a microwave-driven gasdynamic mirror experiment [J].
Journal of Propulsion and Power, 2013, 29(3): 507.
[24] BAGRYANSKY P A, BEKLEMISHEV A
D, Postupaev V V. Encouraging results and new ideas for fusion in linear traps [J].
Journal of Fusion Energy, 2019, 38(1): 162.
[25] 帕斯卡・夏伯特, 尼古拉斯・布雷斯韦特. 射频等离子体物理 [M]. 北京: 科学出版社, 2015.
[26] STIX T H. Waves in Plasmas [M].
New York: American Institute of physics Melville, 1992.
[27] LIEBERMAN M A, LICHTENBERG A
J. Principles of plasma discharges and materials processing [M]. USA: John
Wiley & Sons, Inc., 2005.
[28] YOON J S, SONG M Y, HAN J M,
et al. Cross sections for electron collisions with hydrogen molecules [J].
Journal of Physical and Chemical Reference Data, 2008, 37(2): 913.
[29] MARTA CAZZADOR. Analytical and
numerical models and first operations on the negative ion source NIO1 [D].
Veneto: Università degli Studi di Padova, 2014.
[30] VAHEDI V, LIEBERMAN M A,
DIPESO G, et al. Analytic model of power deposition in inductively-coupled
plasma sources [J]. Journal of Applied Physics, 1995, 78(3): 1446.
|