[1] Lao L L, John H S, Stambaugh R D, et al. Reconstruction of current profile parameters and plasma shapes in tokamaks[J]. Nucl. Fusion, 1985, 25(11): 1611-1622.
[2] 田振夫. 求解泊松方程的高精度紧致差分方法[J]. 黄淮学刊(自然科学版), 1998, 14(4): 25-28.
[3] 田振夫. 泊松方程的高精度三次样条差分方法[J]. 西北师范大学学报(自然科学版), 1996, 32(2): 13-17.
[4] Wang Y, Zhang J. Sixth order compact scheme combined with multigrid method and extrapolation technique for 2D Poisson equation[J]. Journal of Computational Physics, 2009, 228(1): 137-146.
[5] Zhang J. Multigrid method and fourth-order compact scheme for 2D Poisson equation with unequal mesh-size discretization[J]. Journal of Computational Physics, 2002, 179(1): 170-179.
[6] 葛永斌, 吴文权, 卢曦. 求解泊松方程的六阶离散多重网格方法[C]. 中国工程热物理学会热机气动热力学学术会议, 2001.
[7] Hockney R W. A fast direct solution of Poisson's equation using Fourier analysis[J]. Journal of the ACM (JACM), 1965, 12(1): 95-113.
[8] 岳小宁, 肖炳甲, 罗正平. 基于CUDA的二维泊松方程快速直接求解[J]. 计算机科学, 2013, 40(10): 21-23.
[9] Haverkort J W. Axisymmetric ideal MHD tokamak equilibria[Z]. homepage.tudelft.nl, 2009.
[10] 吕涛. 区域分解算法[M]. 北京: 科学出版社, 1992.
[11] 罗正平, 肖炳甲, 朱应飞, et al. Online plasma shape reconstruction for EAST tokamak[J]. Plasma Science and Technology, 2010, 12(4): 412-415.
[12] Yue X N, Xiao B J, Luo Z P, et al. Fast equilibrium reconstruction for tokamak discharge control based on GPU[J]. Plasma Phys. and Contr. Fusion, 2013, 55(8): 85016-85024.
[13] Pataki A, Cerfon A J, Freidberg J P, et al. A fast, high-order solver for the Grad-Shafranov equation[J]. J. Comp. Phys., 2013, 243: 28-45.
[14] 张舒. GPU高性能运算之CUDA[M]. 中国水利水电出版社, 2009.
[15] Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes in C[M]. Cambridge: Cambridge University Press, 1996.
[16] 岳小宁. 基于GPU的等离子体快速平衡重建研究[D]. 合肥: 中国科学技术大学, 2013.
|