欢迎访问《核聚变与等离子体物理》官方网站,今天是 分享到:

核工业西南物理研究院 ›› 2024, Vol. 44 ›› Issue (1): 24-29.DOI: 10.16568/j.0254-6086.202401005

• 核聚变工程 • 上一篇    下一篇

EAST-CTI测试平台上六硼化镧等离子体源的研制

孟凡卫1,张小辉*1,胡广海2,孔德峰2, 3,叶  扬2, 3,黄艳清3, 4,齐美彬1,赵志豪1,李  博1,董期龙5   

  1. (1. 合肥工业大学计算机与信息学院,合肥 230009;2. 中国科学院等离子体物理研究所,合肥 230031;3. 合肥综合性国家科学中心能源研究院,合肥 230031;4. 衡阳师范学院物理与电子工程学院,衡阳 4210024;5. 石河子大学理学院,石河子 832003)
  • 收稿日期:2022-01-17 修回日期:2023-05-28 出版日期:2024-03-15 发布日期:2024-03-13
  • 通讯作者: 张小辉(1988-),男,安徽合肥人,博士,副教授,从事微波诊断、反射计等研究。
  • 作者简介:孟凡卫(1995-),男,安徽阜阳人,硕士研究生,从事电子信息系统的研究。
  • 基金资助:
    国家重点研发计划(2017YFE0300500,2017YFE0300501);国家自然科学基金(11905143);合肥综合性国家科学中心能源研究院(19KZS205,21KZS202);安徽高校协同创新项目(GXXT-2021-014,GXXT-2021-029);中国科学院合肥科学中心卓越用户计划(2020HSC-UE008);中央高校基本科研业务费专项(PA2021GDSK0073)

Development of a lanthanum hexaboride plasma source in EAST-CTI test platform

MENG Fan-wei1, ZHANG Xiao-hui1, HU Guang-hai2, KONG De-feng2, 3, YE Yang2, 3, HUANG Yan-qing3, 4, QI Mei-bin1, ZHAO Zhi-hao1, LI Bo1, DONG Qi-long5   

  1. (1. School of Computer Science and Information Engineering, Hefei University of Technology, Hefei 230009; 2. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031; 3. Energy Research Institute of Hefei Comprehensive National Science Center, Hefei 230031; 4. School of Physics and Electrical Engineering, Hengyang Normal College, Hengyang 4210024; 5. School of Science, Shihezi University, Shihezi 832003)

  • Received:2022-01-17 Revised:2023-05-28 Online:2024-03-15 Published:2024-03-13

摘要: 为了更方便和深入研究紧凑环注入(CTI)系统产生的等离子体团在等离子体中的演化过程,特设计了一套大尺寸、均匀的六硼化镧等离子体源,用来产生磁化、高密度等离子体。等离子体源的阴极采用钨丝间接加热的方式来达到工作温度,阴极最高可达到1800℃。阳极采用耐高温、透过率50%的钼金属网,与阴极之间轴向间距1m。在阴极和阳极之间施加40~200V偏压,阴极发射的电子与中性气体碰撞、电离进而产生长1m直径100mm的稳态磁化等离子体柱。在台面实验中,测试了源的放电性能和等离子体相关参数。实验结果表明,在阴极发射电流密度为1~2A·cm‒2的情况下,测得的氩等离子体电子密度可达到1018m‒3量级,电子温度约为8eV。通过增加阴、阳极之间偏压,阴极发射电流密度最高达到8.5A·cm‒2,等离子体参数与托卡马克边界参数相近。该等离子体源满足设计要求并具备为EAST-CTI系统开展台面实验的能力。

关键词: EAST-CTI, 六硼化镧阴极, 等离子体源, 磁化等离子体

Abstract: In order to facilitate and study in depth the evolution of the plasmoid generated by the compact torus injection (CTI) system in the plasma, a large-size, uniform lanthanum hexaboride plasma source was designed to generate magnetized high-density plasma. The cathode of the plasma source is indirectly heated by a tungsten filament to reach the operation temperature, and the cathode temperature can reach up to 1800°C. The anode is a high-temperature resistant, 50% transmittance molybdenum mesh with an axial spacing to the cathode of 1m. A bias voltage of 40~200V is applied between the cathode and the anode, and the electrons emitted from the cathode collide and ionize with a neutral gas to produce a steady-state magnetized plasma column with length of 1m and diameter of 100mm. Discharge performance of the source was tested and the related plasma parameters were given in laboratory experiments. The experimental results show that the measured argon plasma electron density can reach the order of 1018m‒3 with an electron temperature of about 8eV at a cathode emission current density of 1~2A·cm‒2, and the cathode emission current density can reach a maximum of 8.5A·cm‒2 by increasing the bias between the cathode and anode, and the plasma parameters are similar to those at the tokamak boundary. The lanthanum hexaboride plasma source meets the design specifications and can use in the EAST-CTI system.

Key words: EAST-CTI, Lanthanum hexaboride cathode, Plasma source, Magnetized plasma

中图分类号: