[1] López-Tejeira F, Rodrigo S G, Martín-Moreno L, et al.Efficient unidirectional nanoslit couplers for surface plasmons[J]. Nature Phys., 2007, (3): 324.
[2] Yin L, Vlasko-Vlasov V K, Pearson J, et al.Subwavelength focusing and guiding of surface plasmons[J]. Nano Lett., 2005, (5): 1399.
[3] Nomura W, Ohtsu M, Yatsui T. Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion[J]. Appl. Phys. Lett., 2005, (86):181108.
[4] Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature,2006, 440: 508.
[5] Gay G, Alloschery O, B Viaris de Lesegno, et al. Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry[J]. Phys. Rev. Lett., 2006, 96: 213901.
[6] Garcia-Vidal F J, Pendry J B. Collective theory for surface enhanced Raman scattering[J]. Phys. Rev. Lett.,1996, 77: 1163.
[7] Laurent G, Félidj N, Grand J, et al. Raman scattering images and spectra of gold ring arrays[J]. Phys. Rev. B,2006,73: 245417.
[8] Grosjean T, Fahys A, Suarez M, et al. Annular nanoantenna on fibre micro-axicon[J]. J. Microsc., 2007,229: 354.
[9] Christ A, Martin O J F, Ekinci Y, et al. Symmetry breaking in a plasmonic metamaterial at optical wavelength[J]. Nano Lett., 2008, (8): 2171.
[10] Fedotov V A, Rose M, Prosvirnin S L, et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Phys. Rev. Lett., 2007,99: 147401.
[11] Zheludev N I, Prosvirnin S L, Papasimakis N, et al.Lasing spaser[J]. Nat. Photonics, 2008, (2): 351.
[12] Prodan E, Radloff C, Halas N J, et al. Ahybridization model for the plasmon response of complex nanostructures[J]. Science, 2003, 302: 419.
[13] Suarez M A, Grosjean T, Charraut D, et al. Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications[J]. Opt. Commun., 2007,270: 447.
[14] Li K, Clime L, Tay L, et al. Multiple surface plasmon resonances and near-infrared field enhancement of gold nanowells[J]. Anal. Chem., 2008, 80: 4945.
[15] Aizpurua J, Blanco L, Hanarp P, et al. Light scattering in gold nanorings[J]. J. Quant. Spectrosc. Radiat. Transf.,2004, 89: 11.
[16] Larsson E M, Alegret J, Käll M, et al. Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors[J]. Nano Lett., 2007, (7): 1256.
[17] Hao F, Larsson E M, Ali T A, et al. Shedding light on dark plasmons in gold nanorings[J]. Chem. Phys. Lett.,2008, 458: 262.
[18] Sheridan A K, Clark A W, Glidl E A, et al. Multiple plasmon resonances from gold nanostructures[J]. Appl.Phys. Lett., 2007, 90: 143105.
[19] Ding P, Liang E J, Hu W Q, et al. Tunable plasmonic properties and giant field enhancement in asymmetric double split ring arrays[J]. Photonics and Nanostructures Fundamentals and Applications, 2011, (9): 42−48.
[20] Li Z X, Yu Y, Chen Z Y, et al. Ultrafast third-order optical nonlinearity in Au triangular nanoprism with strong dipole and quadrupole plasmon resonance[J]. Urnal of Physical Chemistry, 2013, (3): 9.
[21] Zhou Zhangkai, Peng Xiaoniu. Tuning gold nanorodnanoparticle hybridsinto plasmonic fano resonance for dramatically enhanced light emission and transmission[J]. Nano Lett., 2011, 11: 49–55.
[22] Cetin A E, Altug H. Fano resonant ring/disk plasmonic nanocavities on conducting substrates for advanced biosensing[J]. ACS Nano, 2012, (6): 9989.
[23] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Phys. Rev. B, 1972, (6): 4370. |