[1] Furth H P, Killen J, Rosenbluth M N. Finite-resistive instabilities of a sheet pinch[J]. Phys. Fluids, 1963, 6: 459.
[2] Chang Z, Callen J D, Fredrickson E D, et al. Observation of nonlinear neoclassical pressure-gradient-driven tearing modes in TFTR[J]. Phys. Rev. Lett., 1995, 74: 4663.
[3] Zohm H, Gantenbein G, Gude A, et al. Neoclassical tearing modes and their stabilization by electron cyclotron current drive in ASDEX Upgrade[J]. Phys. Plasmas, 2001, 8: 2009.
[4] Günter S, Gude A, Maraschek M, et al. High- confinement regime at high βn values due to a changed behavior of the neoclassical tearing modes[J]. Phys. Rev. Lett., 2001, 87: 275001.
[5] Haye R J La, Lao L L, Strait E J, et al. High beta tokamak operation in DIII-D limited at low density/collisionality by resistive tearing modes[J]. Nucl. Fusion, 1997, 37: 397.
[6] Yu Q, Günter S, Scott B D. Numerical modeling of linear drift-tearing mode stability[J]. Phys. Plasmas, 2003, 10: 797.
[7] Wesson J. Tokamaks[M]. Oxford, 1987.
[8] Chang Z, Callen J D. Global energy confinement degradation due to macroscopic phenomena in tokamaks[J]. Nucl. Fusion, 1990, 30: 219.
[9] Fitzpatrick R. Helical temperature perturbation associated with tearing modes in tokamak plasmas[J]. Phys. Plasmas, 1995, 2: 825.
[10] Gunter S, Yu Q, Lackner K. Modelling of heat transport in magnetised plasmas using non-aligned coordinates[J]. J. Comp. Phys., 2005, 209: 354-370.
[11] Yu Q. Numerical modeling of diffusive heat transport across magnetic islands and local stochastic field[J]. Phys. Plasmas, 2006, 13: 062310.
[12] Luce T C. ECRH physics and technology in ITER[J]. Nucl. Fusion, 2008, 48: 050201.
[13] 洪文玉, 严龙文, 钱俊, 等. HL-2A装置的ECRH实验和偏滤器特性[J]. 核聚变与等离子体物理, 2007, 27(1): 7.
[14] WANG Baonian. ECC Program on EAST and HT-7[R]. Sanya: 16th EC workshop, 2011. |