[1] Takewaki H, Nishiguchi A, Yabe T. Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations [J]. J. Comput. Phys., 1985, 61: 261.
[2] Yabe T, Aoki T. A universal solver for hyperbolic- equations by cubic-polynomial interpolation: I. one dimensional solver [J]. Comput. Phys. Commun., 1991, 66: 219.
[3] Yabe T, Ishikawa T, Wang P Y, et al. A universal solver for hyperbolic-equations by cubic-polynomial interpo- lation: II. two- and three-dimensional solvers [J]. Comput. Phys. Commun., 1991, 66: 233.
[4] Yabe T. Interface capturing and universal solution of solid, liquid and gas by CIP method [A]. Proceedings Conf High-Performance Computing on Multi-Phase Flow [C]. Tokyo, 1997.
[5] Yabe T, Wang P Y. Unified numerical procedure for compressible and incompressible fluid [J]. J. Phys. Soc. Japan, 1991, 60: 2105.
[6] Xiao F, Yabe T, Ito T. Constructing an oscillation- preventing scheme for the advection equation by a rational function [J]. Comput. Phys. Commun., 1996, 93: 1.
[7] Xiao F, Yabe T, Nizam G, et al. Constructing a multi- dimensional oscillation-preventing scheme for the advection equation by a rational function [J]. Comput. Phys. Commun., 1996, 94: 103.
[8] Nakamura T, Tanaka R, Yabe T, et al. Exactly conservative semi-Lagrangian scheme for multi- dimensional hyperbolic equations with directional splitting technique [J]. J. Comput. Phys., 2001, 174: 171.
[9] Yoon S Y, Yabe T. The unified simulation for incompressible and compressible flow by the predictor- corrector scheme based on the CIP method [J]. Comput. Phys. Commun.,1999, 119: 149.
[10] Yabe T, Mizoe H, Takizawa K, et al. Higher-order schemes with CIP method and adaptive Soroban grid towards mesh-free scheme [J]. J. Comput. Phys., 2004, 194: 57.
[11] Xiao F, Yabe T, Ito T, et al. An algorithm for simulating solid objects suspended in stratified flow [J]. Comput. Phys. Commun., 1997,102: 147.
[12] Yabe T. Simulation of laser-induced melting and evaporation dynamics by the unified solver CIP for solid, liquid and gas [A]. Mathematical Modeling of Weld Phenomena [C]. Cambridge University Press, 1998.
[13] Nakamura T, Yabe T. Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov- Poisson equation in phase spacel [J]. Comput. Phys. Commun., 1999, 120: 122.
[14] Barada D, Fukuda T, Itoh M, et al. Cubic interpolated propagation scheme in numerical analysis of lightwave and optical force [J]. Optics Express, 2006, 14: 4152.
[15] Watanabe S, Kakuta Y, Hashimoto O. Analysis of electromagnetic field using CIP method and its application of one-layer wave absorber [A]. 17th International Zurich Symposium on Electromagnetic Compatibility [C]. Zurich, 2006.
[16] 傅德月, 彭晓东. 高阶CIP数值方法及其在相关物理问题中的应用 [J]. 计算物理, 2011, 28: 259-267。
[17] Zalesak S T. Fully multidimensional flux-corrected transport algorithm for fluids [J]. J. Comput. Phys.,1979, 31: 335
[18] Chacón L, Knoll D A, Finn J M. An implicit, nonlinear reduced resistive MHD solver [J]. J. Comput. Phys., 2002, 178: 15–36.
[19] Philip B, Chacón L, Pernice M. Implicit adaptive mesh refinement for 2D reduced resistive magnetohydro- dynamics [J]. J. Comput. Phys., 2008, 227: 8855– 8874. |