[1] Groot J S De, Toor A, Golberg S M, et al. Growth of the Rayleigh-Taylor instability in an imploding Z-pinch[J]. Phys. Plasmas, 1997, 4: 737.
[2] Haines M G. A heuristic model of the wire array Z-pinch[J]. IEEE Trans. on Plasma Science, 1998, 26: 1275.
[3] Cochran F L, Davis J, Velikovich A L. Stability and radiative performance of structured Z-pinch loads imploded on high-current pulsed power generators[J]. Phys. Plasmas, 1995, 2: 2765.
[4] Matzen M Keith. Z pinches as intense X-ray sources for high-energy density physics applications[J]. Phys. Plasmas, 1997, 4: 1519.
[5] Sanford T W L, Allshouse G O, Marder B M, et al. Improved symmetry greatly increases X-ray power from wire-array Z-pinches[J]. Phys. Rev. Lett., 1996, 77: 5063.
[6] Wright R J, Pott D F R, Haines M G. Stability consider- ations of a hot cylindrical pinch[J]. Plasma Phys., 1976, 18: 1.
[7] Arber T D, Howell D F. The effect of sheared axial flow on the linear stability of the Z-pinch[J]. Phys. Plasmas, 1996, 3: 554.
[8] Shumlak U, Hartman C W. Sheared flow stabilization of the m = 1 kink mode in Z pinches[J]. Phys. Rev. Lett., 1995, 75: 3285.
[9] Shumlak U, Roderick N F. Mitigation of the Rayleigh- Taylor instability by sheared axial flows[J]. Phys. Plasmas, 1998, 5: 2384.
[10] Ruden E L. Rayleigh-Taylor instability with a sheared flow boundary layer[J]. IEEE Trans. on Plasma Science, 2002, 30: 611.
[11] Arber T D, Coppins M, Scheffel J. Large Larmor radius stability of the Z pinch[J]. Phys. Rev. Lett., 1994, 72: 2399.
[12] Arber T D, Russell P G F, Coppins M, et al. Linear stability of the high temperature, dense Z pinch[J]. Phys. Rev. Lett., 1995, 74: 2698.
[13] Arber T D. Hybrid simulation of the nonlinear evolution of a collisionless, large larmor radius Z pinch[J]. Phys. Rev. Lett., 1996, 77: 1766.
[14] Russell P G F, Arber T D, Coppines M, et al. Linear stability of the collisionless, large Larmor radius Z-pinch[J]. Phys. Plasmas, 1997, 4: 2322.
[15] Ganguli G. Stability of an inhomogeneous transverse plasma flow[J]. Phys. Plasma, 1997, 4: 1544.
[16] Qiu X M, Huang L, Jian G. D. Synergistic mitigation of the Rayleigh-Taylor instability in Z-pinch implosions by sheared axial flow and finite Larmor radius effect[J]. Phys. Plasmas, 2003, 10: 2956.
[17] Douglas M R, Deeney C, Roderick N F. Effect of sheath curvature on Rayleigh-Taylor mitigation in high-velocity uniform-fill, Z-pinch implosions[J]. Phys. Rev. Lett., 1997, 78: 4577.
[18] Ryutov D D. Rayleigh-Taylor instability in a finely structured medium[J]. Phys. Plasmas, 1996, 3: 4336.
[19] Ruden E L. The polarity dependent effect of gyro- viscosity on the flow shear stabilized Rayleigh- Taylor instability and an application to the plasma focus[J]. Phys. Plasmas, 2004, 11: 713.
[20] Roberts K V, Taylor J B. Magnetohydrodynamic equations for finite Larmor radius[J]. Phys. Rev. Lett., 1962, 8: 197.
[21] Hazeltine R D, Meiss J D. Plasma confinement[M]. Addision-Wesley, Redwood, CA, 1992.
[22] Huba J D. Finite Larmor radius magnetohydrodynamics of the Rayleigh-Taylor instability[J]. Phys. Plasmas, 1996, 3: 2523. |