欢迎访问《核聚变与等离子体物理》官方网站,今天是 分享到:

核聚变与等离子体物理 ›› 2011, Vol. 31 ›› Issue (1): 91-96.

• 等离子体应用 • 上一篇    

微小等离子体反应器的导出机理研究

王 海1, 2,童云华1, 2,文 莉3   

  1. (1. 安徽工程大学机械与汽车工程学院,芜湖 241000;2. 安徽省先进数控和伺服驱动技术重点实验室,芜湖 241000;3. 中国科学技术大学精密机械与精密仪器系,合肥 230027)
  • 收稿日期:2010-08-05 修回日期:2010-11-23 出版日期:2011-03-15 发布日期:2011-03-03
  • 作者简介:王海(1976-),男,安徽马鞍山人,博士,副教授,硕士生导师,主要从事微纳米加工技术的研究。
  • 基金资助:

    国家自然科学基金资助项目(50605061);江苏省微纳生物医疗器械设计与制造重点实验室资助(JSNBI 200905)

Research of extraction mechanism for microplasma reactor

WANG Hai1, 2, TONG Yun-hua1, 2, WEN Li3   

  1. (1. School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000; 2. Advanced Numerical Control & Servo Driving Technology Key Lab of Anhui, Wuhu 241000;3. Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027)
  • Received:2010-08-05 Revised:2010-11-23 Online:2011-03-15 Published:2011-03-03

摘要:

提出了一种通过空心阴极底部的微孔及外加偏置电场的方法实现微小等离子体导出的机制,并采用二维流体模型对其进行了数值仿真研究。当工作气体为SF6、工作气压为2~9kPa、微孔半径为0.25μm时,F原子最大束流密度在(1.53~5.62)×1014cm-3·s-1之间,SF5+最大束流密度在(2.46~7.83)×1016cm-3·s-1之间。工作气压为5kPa时,样品表面处F的平均能量为3.82eV,散射角在-14º~14º之间;SF5+的平均能量为25eV,散射角为-13º~14º。当偏置电压在10~50V之间变化时,SF5+平均能量在52~58eV之间变化。上述FSF5+密度满足硅基底材料的有效刻蚀需要,验证了扫描刻蚀加工的可行性。

关键词: 扫描等离子体刻蚀加工, 微小等离子体反应器, 导出机制

Abstract:

An extraction mechanism based on micronozzle in the bottom of the microhollow cathode and applied bias electrical field is proposed, and digitally simulated with a two dimensional fluid model. When the operating gas is SF6 and its pressure is 2~9kPa, radius of the micronozzle is 0.25μm, maximum F atom flux density is between (1.53~5.62)×1014cm-3·s-1, maximum SF5+ flux density is between (2.46~7.83)×1016cm-3·s-1. When gas pressur is  5kPa,average energy of F atom at sample surface is 3.82eV, dispersion angle is −14º~14º; average energy of SF is 25eV, dispersion angle is −13º~14º. When applied voltage across hollow cathode and sample is between 10~50V (sample as cathode), average energy of SF is between 52~58eV. The density of F and SF in the simulation result could satisfy the requirement for silicon etching, and the feasibility of scanning plasma etching validated.

Key words: Scanning plasma etching, Microplasma reactor, Extraction mechanism

中图分类号: