[1] Shen H, Qin Z Y, Zhang Y, et al. Generation of nitrogen beams with very high N+/ N2+ ratio using hollow cathode discharge [J]. Vacuum, 2005, 77: 157-162.
[2] Agarwal S, Hoex B, Van de Sanden M C M, et al. Absolute densities of N and excited N2 in a N2 plasma [J]. Appl. Phys. Lett., 2003, 83 (24): 4918.
[3] Wrinski Z. Dissociation of nitrogen in the plasma- cathode interface of glow discharges [J]. Vacuum, 2005, 78: 641-647.
[4] Wronski Z. Study of fundamental processes affecting the structure of the cathode zone of nitrogen/titanium dc discharge [J]. J. Phys. D: Appl. Phys., 2000, 33: 414-425.
[5] Guerra V, Loureiro J. Electron and heavy particle kinetics in a low-pressure nitrogen glow discharge [J]. Plasma Sources Sci. Techn., 1997, 6: 361-372.
[6] Yu W, Zhang L Z, Wang J L. Monte Carlo simulation of the fast electrons and heavy particles in the CDS of nitrogen dc glow discharge [J]. J. Phys. D: Appl. Phys., 2001, 34: 3349-3355.
[7] Fu G S, Wang J L, Yu W, et al. Self-consistent description of nitrogen dc glow discharge [J]. Chin. Phys. Lett., 2002, 19(4): 521-523.
[8] Zhu X M, Pu Y K. A molecular kinetic model for the optical emission spectroscopy technique in inductively coupled nitrogen plasma [J]. Phys. Plasmas, 2006, 13(1 - 5): 063507.
[9] Bogaerts A, Gijbels R. Hybrid Monte Carlo model of a direct current glow discharge [J]. J. Appl. Phys., 1995, 78(4): 2233-2241.
[10] 金晓林, 杨中海.电子回旋共振放电的电离特性PIC/MC模拟 [J]. 物理学报, 2006, 55 (11): 5930-5937.
[11] Neyts E, Tan M, Bogaerts A, Gijbels R. Particle-in-cell/ Monte Carlo simulations of a low-pressure capacitively coupled radio-frequency discharge: Effect of adding H2 to an Ar discharge [J]. J. Appl. Phys., 2003, 93 (9): 5025-5033.
[12] Schweigert I V, Schweigert V A. Combined PIC-MCC approach for fast simulation of a radio frequency discharge at a low gas pressure [J]. Plasma Sources Sci. Techn., 2004, 13: 315-320.
[13] Verboncoeur J P. Particle simulation of plasmas: review and advances [J]. Plasma Phys. Contr. Fusion, 2005, 47: A231-A260.
[14] 邵福球. 等离子体粒子模拟 [M]. 科学出版社, 2002. 8.
[15] 张连珠. N2+离子在氮直流辉光放电中碰撞离解的作用[J]. 物理学报,2003, 52(4): 920-924.
[16] Bastien F, Wu J H, Goguillon P, et al. Mechanism of a nitrogen abnormal glow discharge: computation and measurements of the spatial light distribution [J]. J. Phys. D: Appl. Phys., 1990, 23: 813-822.
[17] Vahedi V, Dipeso G, Birdsall C K,et al. Capacitive RF discharge modeled by particle-in-cell Monte Carlo simu- lationⅠ: analysis of numerical techniques [J]. Plasma Sources Sci. Techn., 1993, 2: 261-272.
[18] Itikawa Y. Cross section for electron collisions with nitrogen molecules [J]. J. Phys. Chem. Ref. Data, 2006, 35(1): 31-52.
[19] Lapenta G, Brackbill J U. Dynamic and selective control of the number of particles in kinetic plasma simulation [J]. J. Comput. Phys., 1994, 115: 213-227.
[20] Margulas A, Jolly J. Spectroscopy diagnostics of the plasma in the cathode region of a nitrogen glow discharge [J]. Rev. Phys. Appl., 1989, 24: 323-329.